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ABSTRACT 

Two brief studies of the effect of non-zero initial conditions on the per- 

formance according to the minimax criterion and on the selection of 

minimax controllers from a given set of controllers are reported. The 

results of two studies of extremal bounded amplitude, bounded rate inputs 

to linear systems are also reported. 

The first study of the effect of non-zero initial conditions considers one 

flight condition for a vehicle of the Saturn V Type with first order gimbal 

dynamics. The control configuration has pitch rate, lagged pitch attitude 

and normal acceleration feedbacks. Each of the optimal controllers had 

one positive pole, one negative pole and a stable complex pair of poles. 

The positive pole is small and its magnitude decreases with increasing 

magnitude of initial conditions. 

The second study of the effect of non-zero initial conditions considers two 

flight conditions for “Model Vehicle Number 2 for Advanced Control 

Studies” with no gimbal dynamics. The control configuration has pitch 

attitude, pitch rate and lateral velocity feedbacks. The optimal gains are 

found to be monotone functions of the magnitude of initial conditions. 

Further, the stability of the optimal system tends to increase with 

increasing magnitude of initial conditions. 

The first study of extremal inputs is restricted to an oscillator. The 
theoretical development indicates the relation between several sets of 

necessary conditions and one sufficient condition. One set of necessary 

conditions is shown to be sufficient and from these conditions general 

explicit formulas for extremal inputs are derived. 

The last study pertains to the development of computational algorithms for 

extremal inputs for general linear stationary systems. Two algorithms 

are presented, and an example of computer results obtained from one 

algorithm is given. 
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FOREWORD 

This document partially comprises the final report prepared by Honeywell, 
Incorporated for George C. Marshall Space Flight Center, Huntsville, 
Alabama, 35812 under Contract NAS 8-11206. 

The application of optimal (minimax) control theory to a piecewise constant 
approximation of a large launch booster for the first 84 seconds of flight 
is presented in NASA CR-546. A linear piecewise constant controller is 
determined which minimizes the maximum of several cost items. 

The work on this contract was supervised by Mr. C. R. Stone and Dr. E. R. 
Rang. Section 2 was prepared by Mr. W. A. Glasser. Section 3 was prepared 
by Mr. K. D. Graham. Sections 4 and 5 were prepared by Dr. C. A. Harvey. 
Dr. J. Y. S. Luh contributed to the results of Section 4. The linear programming 
formulation presented in Section 5 was developed by Dr. P. Treuenfels. 
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SECTION 1 
INTRODUCTION 

The need to design controllers for large launch boosters provides the moti- 
vation for the minimax studies. Four areas of investigation are discussed. 

The first two studies are concerned with the effect of non-zero initial condi- 
tions on the selection of minimax controllers. The remaining studies are 

aimed at theoretical developments which are necessary for the inclusion of 
a bound on the time rate of change of the disturbance in the minimax prob- 

lem statement. The inclusion of such a constraint would yield a closer 
approximation to disturbances which are encountered in practice. 

NON- ZERO INITIAL CONDITIONS 

The purpose for studies in Sections 2 and 3 was to examine the effect of 
non-zero initial conditions on control cost (performance index) and on 

selection of minimax controllers for large launch boosters. In both sec- 
tions, rigid vehicles with linear controllers and bounded amplitude winds 

are assumed. 

Saturn V Study 

The vehicle in Section 2 is a typical Saturn V booster with first order 

gimbal dynamics for a ten-second flight condition characterized by maxi- 
mum dynamic pressure and Mach number of about 1. 7. Gains for a good 
controller for this vehicle with zero initial conditions were known from 
work on NASA Contract NASw-563 (Honeywell MPG Report 1541-TR 14). 

This controller had pitch rate, lagged pitch attitude and normal accelera- 
tion feedbacks. Four values of initial conditions were chosen on each 



state variable (pitch attitude, pitch rate, lateral velocity, and gimbal angle). 

The gain grid chosen represented 54 different controllers and contained the 

controller for zero-initial conditions. The wind velocity had a magnitude of 

75 meters per second. 

It was found that a set of only four controllers minimized the control cost 

for all of the 16 initial conditions. In particular, the controller for zero 

initial conditions was also best for small values of initial conditions on pitch 

attitude, pitch rate, gimbal angle, and all values of lateral velocity consi- 

dered. 

The four best controllers all had one positive and one negative real pole, and 

a stable complex pair of poles. The positive pole was small and its magnitude 

decreased with increasing magnitude of initial conditions. The closed loop 

natural frequency and the damping ratio of the complex pair decreased with 

increasing amplitude of initial conditions. 

The ranges of values of the positive pole, natural frequency, and damping 

ratio of the four best controllers are as follows: 

0.001738 < real pole < 0.005408 - - 

0.780 cps C f < 0. 898 cps - - 

0.201 5 5 C 0.063 - 

Model Vehicle Number 2 Study 

Data for the vehicle in Section 3 is taken from the data package “Model Vehicle 

Number 2 for Advanced Control Studies” and perfect gimbal dynamics were 

assumed. A cost item corresponding to bending moment was included in this 

study. Two flight conditions were considered: (1) one was sixteen seconds 

long near Mach 0. 55 with dynamic pressure about one-third of maximum; and 



(2) the second was eight seconds long at Mach 1 with about eight-tenths 

maximum dynamic pressure. The controllers had pitch attitude, pitch 
rate, and lateral velocity feedback gains with the wind disturbance intro- 
duced in such a manner that the gains could easily be converted to equiva- 

lent ones for controllers with pitch attitude, pitch rate, and either normal 
acceleration or attack angle feedback signals. 

Good controllers for zero initial conditions were known for both flight condi- 

tions from Honeywell Report 12003-FTRl. Each had relatively high gains and 
all real poles with one of them positive. The positive pole was small for the 
first flight condition (real pole at 0.00055) and large for the second one (real 

pole at 0. 30809). These particular flight conditions were selected because 
it was expected that the influence of initial conditions would be comparatively 

large with higher controller gains, and particularly so with the controller having 

the large positive pole. 

Three iterations of cost computations were performed. A total of 125 con- 

trollers was included in each gain grid. Three values of non-zero initial 
conditions were chosen for pitch attitude, pitch rate, and lateral velocity, 

with a range of four to one between the minimum and maximum values in 

each case. The wind velocity was 59 meters per second in the first flight 

condition and 75 meters per second in the second one. 

The results for the first flight condition are generally summarized as 

follows: 

0 All gains are monotone non-decreasing/non-increasing with the 

magnitude of any initial conditions 

0 All minimax controllers have a negative real and a stable com- 

plex pair of closed loop poles 

0 The real pole is much closer to the origin than the complex pair 

and its distance from the origin decreases with increasing magni- 
tude of initial conditions 
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0 The damping ratio and natural frequency of the complex pair 

increase slightly with increasing magnitude of initial conditions. 

0 The range of values of the real pole Z. is -0.00115 z. < -0.00018. - 

0 The range of values of c’ ando, of the complex poles is 0. 64 < c< 0. 87 - - 
and 0.071< tin cps C 0.094. - - 

0 It is possible to select one fixed gain controller which gives good 

performance for each initial condition. 

0 One initial condition, the maximum value of the initial condition on 

lateral velocity considered, must be excepted for several of the 

above cone lusi ons. However, this initial condition appears to be 

larger than need be considered, so its exception is not serious. 

The conclusions for the second flight condition are similar: 

0 All gains are monotone non-decreasing/non-increasing with the 

magnitude of initial conditions on the state variables. 

0 All minimax controllers have real poles and one of them is posi- 

tive. 

0 The distance of the positive poles from the origin decreases with 

increasing magnitude of initial conditions (0.041 < z. <_ 0. 3291). - 

0 It is possible to select one fixed gain controller which gives good 

performance for each initial condition. 

0 One initial condition, the maximum of the initial condition on pitch 

attitude considered, must be excepted for the third and fourth COP- 

clus ions. 



THEORETICAL DEVELOPMENTS 

The purpose of section 4 is to present theoretical developments applicable 
to the minimax control problem with a bound on the time derivative of the 
disturbance. The extremal inputs may be thought of as worst disturbances 
to the system and the desired result of this study is a means of character- 

izing such inputs. The discussion is restricted to an oscillator so that 
explicit results are achieved. The oscillator is general, however, in the 

sense that extremal inputs may have an arbitrary number of segments on 
which the input is at its extreme. The theoretical development presented 

for the oscillator can be generalized. The results of such a generalization 
are presented in section 5. The discussion of the theory associated with the 

oscillator indicates the relationship between the necessary conditions for 
extremal inputs obtained by Gamkrelidze, Bryson, Denham and Dreyfus, 

and Russell and Schmaedeke, and the sufficient conditions obtained by 
Russell. The necessary conditions of Russell and Schmaedeke are shown 

to be sufficient. These conditions are used to determine general explicit 
formulas for extremal inputs. 

COMPUTATIONAL ALGORITHMS 

The purpose of section 5 is to develop computational algorithms which may 
be used to determine extremal inputs for general linear stationary systems. 

Necessary and sufficient conditions for extremal inputs are presented. A 
computational algorithm is formulated based on these conditions. Also a 
linear programming formulation of an approximation to the problem is given, 
Results of a computer program developed from this last formulation are 

presented for an example. 
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SECTION 2 

MINIMUM WIND EFFECT CONTROL OF A SATURN V 
LAUNCH VEHICLE WITH NON-ZERO INITIAL CONDITIONS 

A natural criterion for launch booster control is the minimum wind effect 

criterion. Small errors in the system response do not degrade performance. 

Hence, there is no reason for saying that control performance is not optimum 

if the controller permits small errors. The major concern is the maximum 

value that error components attain over the entire launch trajectory. Hence, 

a desirable control criterion is one that rates controllers (in terms of a 

performance index) according to their capabilities for holding the maximum 

normalized error component to a minimum over the launch interval. 

The synthesis of such a controller presents a formidable task. First, it 

must be assumed that the launch vehicle can be adequately described over 

the portion of the launch trajectory of interest by a set of linear, constant- 

coefficient differential equations. A second and less restrictive assumption 

is that the controller is linear fixed-gain. Further, it is assumed that the 

wind disturbance is bounded by a known maximum speed. Under these 

assumptions, a minimum wind effect controller is synthesized for a Saturn V 

launch vehicle with non-zero initial conditions. 

Given the launch vehicle data for the maximum dynamic pressure flight 

condition, a controller is synthesized which minimizes maximum weighted 

error components over a fixed time interval with worst disturbances 

within a given class of bounded amplitude disturbances and a specified vehicle 

initial condition. The resulting controller is a linear, fixed-gain feedback 

controller whose optimal gains are a function of vehicle initial conditions. 

The linear representation of the longitudinal rigid-body body equations of 

motion of a Saturn V launch booster is chosen to illustrate the synthesis 



technique of a minimum wind-effect controller for a linear stationary system 
with non-zero initial conditions and amplitude bounded disturbances. The 

vehicle data is that for the maximum dynamic pressure flight condition. 

The synthesis procedure selects the controller gains such that a specified 
performance index will be minimized for a given disturbance and vehicle 

initial condition. This results in the need to integrate a system of first- 
order, piecewise linear, autonomous, ordinary differential equations. The 
computation may be readily accomplished with the use of either an analog or 
digital computer. 

The numerical results indicate that the optimal gains (which minimize 

the performance index) are a function of the vehicle initial conditions. 
Furthermore, the vehicle has an unstable closed-loop pole for certain 

optimal gains. Having determined the optimal gains for a given vehicle 
initial condition, a linear fixed-gain controller which minimizes the per- 

formance index for the specified initial condition is determined. 

SYSTEM REPRESENTATION 

To illustrate the synthesis of a minimum wind effect controller for a 

linear stationary system with non-zero initial conditions and amplitude 
bounded disturbances, a linear representation of the longitudinal rigid body 

equations of motion of a Saturn V launch vehicle is considered (reference 1). 
The assumed equations of motion are: 

‘$ = -Cl” - 9 

. . 
Z = YlQ+ Yz@+Y3B (1) 

Q = @ + (VW - g,/v 



The control equation is: 

4 +P = K3 {8 + K29 +[KlYl - Cl7 - ClKl (CM - C&a + 

+[K1y3 - c-27 - cp1 (Cn/r - c,)l PI 

Introducing xl = @ (attitude angle); x2 = i (attitude rate); x3 = * z (displacement 
rate of center of gravity); and x4 = p (gimbal motor defection angle) yields the 

following set of closed loop equations: 

. 

x1 

. 
x2 

. 
x3 

. 
x4 

L 

where: 

0 1 0 0 

-c1 0 Cl/V -c2 

y1 -I- Y2 0 -YJv Y3 

kl k2 k3 k4 

+ 

0 

-cl/ 

YJV 

-k3 

V 

kl = {Kg/~) 1K2 + Klyl - Cl [T+ Kl (CM - c,)]] 

k2 = K3/7 

k3 = (-K3/7v) iKIYl - Cl CT + Kl (CM - c,)l] 

k4 = {K3 6KlY3 - c27 - C2KJ(CM - c,)] - d/T 

gw (2) 

(3) 



- .- 

Equivalently (2) may be written as: 

. 
x = AQX + CR g(t) 

The open loop set of equations is: 

where : 

. 

x1 

. 
x2 

. 
x3 

. 
x4 

= 

. 

0 

-c1 

Yl +Y2 

0 

1 0 0 

0 q/v -5 

0 -YJV Y3 

0 0 0 

x1 

x2 

x3 

x4 

+ Ll+ 

0 

-cl/v 

Yl/V 

0 

g(t) (4) 

u = klxl + k2x2 + k3x3 + k4x4 - kg g(t) 

The four real parameters kl, k2, kg, and k4 may be thought of as pseudo- 
gains. However, these parameters must be constrained so that the solutions 

(of the defining equations for kl, k2, kg, k4) for the gains, time constant and 
accelerometer location are physically realizable. In order for the time con- 
stant 7 to be real it is necessary that: 

[(k4Cl + vk3C2) (CM - Cc) - k4Y1 - vk3Y312 

- 4k2 (C1y3 - C2Y1) q P+ - c(g - Y113 0 (5) 
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Denoting by b3 and bg the minimum and maximum values respectively of 

cM - CG such that CM represents an accelerometer location on the vehicle, 

it is possible to express the constraint on the k’s in the form: 

E(k) fl [bg, b9 3 # 4 

where : 

E(k) = iA: [(k4Cl + vk3C2)X - k4y1 - vk3y3 I2 

’ 4k2 (ClY3 - - C2Y4 (C,X - Y,)3 

This constraint is just a mathematical way of stating that the k’s must be 

chosen so that there is some accelerometer location on the vehicle for which 

the corresponding value of 7 is real. For a set of acceptable gains, the con- 

trol law is given by: 

u = kl@ + k2i + k3; + k4/3 - kg g(t) (6) 

The data used represents that for a typical Saturn class launch booster. 

Units for the data are meters, radians, and seconds. T = 10, Cl = -0.2165, 

c2 = 1.1381, Yl + y2 = 27.66, yl/v = 0.0133, y 3 = 17. 65, v = 507. 

The control criterion (performance index) is defined as: 

c (u) = max Ci(u) 

o-=i<s - - 

where : 

Ci(U) = max max 1 di* at> u> g) I 
Wit< T gEG -- 
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for each u in the class U, with x(t, u, g) denoting the solution of (2) and di 
representing a non-zero constant weighting vector for i = 1, 2,. . . . , S 

where S is a positive integer. A controller is said to be optimal in case 

it is an element of U which minimizes C(u). 

For the present problem, it is possible to write the performance index 

(reference 2) as: 

Ci(U) = max C Ixi(t) I + C(i(t) 1 (7) 
tct-0, Tl 

The functions Xi(t) and Y(t) may be obtained as solutions of sets of piece- 

wise linear autonomous differential equations. 

The term k(t) may be expressed as: 

Xi(t) = di . e *Qt x” (8) 

. 
which can be obtained from the solution of the linear system x = AQx with 

x(0) = x”, For the example being considered, this results in the system of 

equations given by: 

. 

x1 

. 
x2 

. 
x3 

. 
x4 

= 

0 1 0 0 

-c1 0 CJV -5 

Y1+Y2 0 -YJV Y3 

kl k2 k3 k4 

x1 

x2 

x3 

x4 

,x” = 

@ 
0 

i0 

. 
Z 

0 

PO 

. 

(9) 
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Forming the inner product. d1 . e AQt x0 yields: 

(10) 

If the di 2.x-e chosen such that: 

dt = 
? 

Oifj # i 

d;= * di if j = i 

Then the system of equations given by (10) reduces to: 

(11) 
z = x3/ d3 

If @o=+o=io= po = 0, the solution of ( 9 ) is identically zero. Consequently, 
the ix,1 Is indicate the contribution to the cost created when the initial condi- 

tions for the vehicle are non-zero with no disturbance present. 
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The second function Y(t) may be expressed as: 

t Pi = S di . e 
AQct- 7) 

CR Yi(T)d’ 
0 

(12) 

with Yi(t) given by: 

YiCt) = (Vw)max sgn [di. e 
AQ( t- 7) 

1 (13) 

which represents a worst disturbance condition. Substitution of expression 

(13) into (12) yields: 

t 

Pi = (Vw)max 
s 

Idi - e AQT c&T 
0 

(14) 

To sim 
bl 

lify, notation (Vw)max will be replaced by VW in all that follows. The 
term e QT CR may be determined by solving the set of differential equations: 

. 

z1 

z2 

Z 

3 

z4 

= 

0 1 0 0 

-c1 0 CJV -57 

Yl+Y2 0 -YJV Y3 

kl k2 k3 k4 

z1 

z2 

z3 

z4 

> z(0) = 

0 

-cJv 

Q/V 

-k3 

(15) 

The p*s may be thought of as representing the costs induced by the disturbance 
for zero vehicle initial conditions. 
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ANALOG COMPUTATION 

The computation necessary to determine the performance index, C(u), is 

readily accomplished using an analog computer. For purposes of scaling, 

the system of equations given by (4) was rewritten as: 

. 
Yl 

. 
y2 

. 
y3 

. 
y4 

= 

0 10 0 

-c1 0 c1 -5 

(Yl+Y$ o -Y1 Y3 
-- 

V V V 

kl k2 k3v k4 

Yl 

y2 

y3 

y4 

+ 

0 

-c1 

YIIV 

-k3v 

g(t) 
V (16) 

where : 

Yl 
. . 

= @, y2 = @, y3 = z/v, and y4 = P. 

This was necessitated by the small numerical value of kg (approximately 

0.00049) which was optimal. The product k3v is approximately equal to 

-0. 249 to which the analog potentiometers may be readily adjusted. 

Accordingly, equations ( 9 ) and (15) are modified. Since the disturbance 

is normalized with respect to the vehicle velocity, v, the expression for 

pi now becomes: 

(17) 

The expressions e AQt x” and e AQt CR are each evaluated using four integra- 

tors and the necessary summing and inverting circuits. The inner products 

14 



are easily formed since the following set of weighting vectors, d’, 
for this example: 

d1 = 

l/2. 3: 

0 

0 

0 

; d2 = 

. - 

0 

1 

0 

0 
II 

; d3 = ; d4 = 

0 

0 

l/523 

0 

- 

0 

0 

0 

l/ 1. 33 

The weighting vectors were selected by determining the maximum value of 

is used 

the transient response of each of the parameters for a similar launch 
vehicle to a disturbance input and then normalizing such that dlQmax = 

d2imax = d3zmax = d4p max’ 

The absolute values were formed using two diodes and two summing ampli- 
fiers. A complete wiring diagram for the analog computer is shown in 

Figure 1. 

The computer is scaled such that ten volts equals one degree or one degree 
per second. Since the performance index as determined from the analog 

computation is in degrees as opposed to radians for the digital computation, 
one must convert degrees to radians or vice versa for comparison purposes. 

The primary use of the analog computer was that of observing the system 

response for a given initial condition and corresponding optimal gain set. 
Furthermore, it gave a convenient check of the digital computation results. 
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Ir 

Figure 1. Analog Computation of the Performance Index C(U) for 
Nonzero Initial Conditions 



DIGITAL COMPUTATION 

A program was written for the Honeywell H- 1800 digital computer to evaluate 

C(u) by solving the systems of equations described by ( 9 ), (12), and (15). 
Initially it was assumed that the set of minimizing gains for non-zero initial 

conditions would be close to the optimal gains for zero initial conditions. 
Consequently, the refined grid of Example 3 of Reference 1 was chosen to 

minimize C(u) for non-zero initial conditions. This gain grid consisted of 
the following set of gains (Gain Grid II): 

kl = 0.401765, 0.602647, 0. 802647 

k2 = 0. 471405, 0.942809, 1.414214 

kg = -0. 00049 105, -0. 00036828 

k4 = -0.353553, -0. 707107, -1.060066 

To more closely observe the dependence of the gains on the vehicle initial 
conditions, another gain grid refinement was made (Gain Grid III): 

kl = 0.401765, 0. 502207, 0. 602647 

k2 = 1. 178511, 1.414214, 1. 649916 

kg = -0.00049105, -0.00042977 

k4 = -0. 530330, -0. 707107, -0. 883586 

All possible combinations of gains were taken resulting in a total of 54 gain 

sets. These were conveniently numbered 1 through 54 and consequently any 
reference to a particular gain set number is only significant with respect to 

the manner in which the combinations were ordered. 

17 



The performance index was minimized for the following set of non-zero initial 

conditions: 

@O 
= 1, 2, 3, and 4 deg 

i. = 0. 5, 1.0, 1. 5 and 2.0 deg/sec 

. 
Z 

0 
= 1, 2, 3, and 4 m/set 

PO 
= 0. 5, 1.0, 1. 5, and 2. 0 deg 

SIMULATION RESULTS 

The numerical results presented herein will be those obtained using Gain 

Grid III and a disturbance magnitude, VW of 75 m/set. Table 1 identifies 

the gains which minimized C(u) for the set of initial conditions used. 

Table 2 lists the initial conditions and the corresponding optimal gains. 

Table 3 shows the location of the controlled vehicle poles. Approximately 
16 minutes of digital computer time was required to determine the optimal 

gains for the set of initial conditions considered. For small values of 

Go, i,, /3 and all 
. 

values of zoconsidered, the optimal gain set is equal to 

the optimal gain set for zero initial conditions. 

The change in gains with a change of initial conditions is shown in Figure 2 

which indicates that the gains are functions of the initial conditions. 

If the initial conditions are sufficiently small, then ~1. >> I Xi 1 and the 1 
optimal gain set will be equal to the optimal gains for zero initial conditions. 

Also if VW is sufficiently large, the optimal gains will be independent of 

initial conditions. Initially the k’s were chosen such that lki I ( Mi. For all 

the optimal gain sets, the gain kg is at its maximum value. Consequently a 

smaller value of C(u) may have been obtained had the bounds on kg been 

increased in magnitude. 
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Table 1. Identification of Optimal Gains 

kl -~ -. 

7 0.401765 
I 

Gain 14 0.401765 

k2 k3 k4 

1.414214 - 0.00049 105 -0.707107 

1.649916 I - 0.00049 105 -0.707107 

Gain 31 ( 0.502207 / 

Gain 49 0.602647 

Gain 8 

Gain 14 

Gain 31 

Gain 49 

C(u) in Radians 
for x” = 0 

0. 121686 

0. 124523 

0.134310 

0. 142547 

vW 
= 75 m/set and T = 10 set 

19 



111.11. ,.I I I I .1..1.111--.. I --. ------- 

Table 2. Optimal Gain and Minimum Cost for 
Given Set of Initial Conditions 

xi 

1. 0" 

2.0" 

3.0" 

4. 0" 

Minimizing Cost C(u) 
xi = ilo xi = p Gain in Radians 

8 0.164166 

49 0.194999 

49 0.221071 

49 0.250300 

0.5" /set 8 0.133654 

1.0" /set 8 0.145514 

1. 5" /set 31 0.150867 

2.0" /set 31 0.158254 

1 m/set 8 0.137765 

2 m/set 8 0.158381 

3 m/set 8 0.169858 

4 m/set 8 0.185952 

0. 5" 8 0.137249 

1. 0" 14 0. 152562 

1. 5” 31 0.164756 

2.0" 31 0.174840 

Min C(u) = 0.121686 for x” = 0 and VW ‘= 75 m/set 
Corresponding Gain Set is Gain 8. 
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Table 3. Location of Controlled Vehicle Poles 

Root 
,-_ .-. -. 

Gain 8 1 

2 

3 

4 -___-- 
Gain 14 1 

2 

3 

4 
-. 

Gain 31 1 

2 

3 

4 

Gain 49 1 

2 

3 

4 

Real Part 
.- 

0.005408 

-0.273208 

-0.226303 

-0.226303 

0.005308 

-0.229022 

-0.248347 

-0.248347 

0.002385 

-0.315827 

-0.115094 

-0.115094 

0.001738 

-0.380567 

-0.080662 

-0.080662 

Imaginary Part 

0.000000 

0.000000 

1.113617 

1 

f = 0.898 cps 
-1.113617 c= 0.201 

0.000000 

0.000000 

1.227910 

1 

f = 0.815 cps 
-1.227910 c = 0.159 

0.000000 

0.000000 

1.261882 f = 0.791cps 
-1.261882 c = 0.092 

0.000000 

0.000000 

1.268127 f = 0.780 cps 
-1.268127 c = 0.063 
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Figure 2. Change in Gains with a Change in Initial Conditions 
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The responses of the optimally controlled system to a worst disturbance of 

maximum amplitude of 75 m/set with the initial conditions previously given 
are shown in Figures 3 through 11. Observation of the analog traces indicates 

that the vehicle parameter z is the major contributor to the increase in the 
performance index for non-zero initial conditions over zero initial condi- 

tions. In fact, without exception 

C(u) = max Ci(u) = C3 
l<iC4 -- 

where : 

c3 = max 
do, 101 

[cl, + ld3d 13 

The analog traces of the Xk are proportional to the transient response of the 

vehicle with non-zero initial conditions as given by (8). For the problem at 
hand: 

@ = 2. 35x1 

. 
z = 575x3 

p = 1. 33A4 

Observation of the Ci traces for large initial conditions (i. e., Figure 4) 

shows that the max {pi + ldixl 13 may occur before T equals 10 seconds 
because of the oscillatory component of the performance index. 

The closed loop pole positions are presented in Table 3. One of the two 
real roots is unstable except for the optimal gain corresponding to go equals 

4 degrees. Over the range of go, the frequency and damping ratio of the 
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Figure 3. Worst Disturbance Responses of Optimally Controlled 
System with Zero Initial Conditions 
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Figure 4. Worst Disturbance Responses of Optimally Controlled 
System with @ = 1 and 2 degrees 

25 



C3 

Figure 5. Worst Disturbance Responses of Optimally Controlled 
System with @ = 3 and 4 degrees 
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UJ= 75im/: 

Figure 6. Worst Disturbance Responses of Optimally Controlled 
System with b = 0.5’/sec and 1. OO/sec 
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Figure 7. Worst Disturbance Response of Optimally Controlled 
System with 4 = 1.5O/sec and $ = 2O/sec 
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- 

Figure 8. Worst Disturbance Responses of Optimally Controlled 
System with i = 1 m/set and 2 m/set 
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Figure 9. Worst Disturbance Responses of Optimally Controlled 
System with i = 3 m/set and i = 4 m/set 
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x; = 
Gr~nll 

x;= a’ 
G&I* 3 1 

Figure 11. Worst Disturbance Responses of Optimally Controlled 
System with fi = 1.5 and 2 degrees 
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complex pair of roots decreased by 13.2 percent and 78 percent respectively. . 
For the range of Go and /3, the frequency and damping ratio decreased by 

11. 9 percent and 54 percent respectively. The change in frequency and 
damping ratio is also observable from the analog traces. 

CONCLUSIONS 

The synthesis technique developed for minimum wind effect control of a 
linear stationary system with non-zero initial conditions and amplitude 

bounded disturbances was found to be feasible. A linear feedback controller 

for the launch vehicle was determined in a systematic fashion and provided 
adequate control of the vehicle. This approach to launch vehicle controller 
synthesis has much merit in terms of development time and cost. 

33 



REFERENCES 

1. Harvey, C. A., “Minimum Disturbance Effects Control of Linear 

Systems with Linear Controllers”, MH MPG Report 1541-TR14. 

2. Harvey, C. A., “Minimax Control of Linear Stationary Systems with 

Non-Zero Initial Conditions and Amplitude Bounded Disturbances”, 

Appendix, Honeywell Report 12003-FTRl. 

34 



SECTION 3 
THE EFFECT OF NON-ZERO INITIAL CONDITIONS 

ON SELECTION OF MINIMAX CONTROLLERS 

Results of the effect of the magnitude of non-zero initial conditions on 

selection of minimax controllers for a piecewise constant approximation 
of a large launch booster are given for two time intervals (flight conditions) 
which occur during the first 84 seconds of flight. 

This section is a supplement to Honeywell Report 12003-FTRl. That report 
contains the results of applying optimal control theory to selection of linear, 

fixed-gain controllers foreach interval with zero initial conditions on each 

interval. It also contains a description of the mathematical approxi- 
mation of the launch booster and the various flight conditions. 

Good zero-initial-condition controllers for intervals I3 and I5 were selected 

from Report 12003-FTRl as a starting point. The techniques and computa- 

tions described in Report 12003-FTRl were used to arrive at the results 

given in this report. 

PROBLEM SUMMARY 

Choice of Intervals 

Interval I3 was chosen for study because its good zero-initial-condition con- 

troller (hereafter called (;Y” = 0)-controllers) were of comparatively high 
gain and responses (hence also cost items) were expected to be more sensi- 
tive to gain change and initial conditions (hereafter called I. C. ) than in an 

interval with lower gain controllers. Interval I5 was chosen because it 
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contained the event of Mach 1 and because the good (x” = 0)-controllers had 

one large positive eigenvalue. 

Choice of Initial Conditions (I. C. Is) and Gains 

It was decided to study the effect of I. C. ‘s on each state variable individually 

to eliminate the possibility of I. C. ‘s on two or more state variables cancel- 

ling their individual effects. 

It is known from the results presented in Appendix A of Report 12003-FTRl 

that non-zero I. C. Is on the state variables increase the cost of control for 

a given controller. From results in Appendix A of Report 12003-PR6, it is 

known that the best controller of a given set of controllers is dependent on 

the magnitude of the I. C. Is. 

Two problems involved in extending previous results and techniques to non- 

zero I. C. *s are: 

A) The I. C. Is at the start of I3 or I5 should have magnitudes which 

are typical of an actual response of a reasonably well-controlled 

vehicle subjected to typical (not maximal) disturbances in the 

earlier portions of a flight; and 

B) The gain grid should have increments consistent with the size of 

the I. C. Is. 

The details of picking values for I. C. 1s with the properties described in (A) 

will be described in MAGNITUDE OF INITIAL CONDITIONS. The problem 

described in (B) can be clarified by an example. As stated above, it is 

known that the best controller of the set represented by a given gain grid 

depends on the magnitude of the I. C. 1 s. 
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II 

Assume that the grid contains its best (p = 0) - controller somewhere near 

the midpoint of the grid, and that typical non-zero I. C. Is (as described in 
(A) are used. If the gain grid is too coarse, the same controller of that set 

will remain the best controller for the chosen I. C. Is. If the gain grid is too 
fine, the best controllers with non-zero I. C. *s will be on the boundary of 

the gain grid. In either of these extreme cases, very little is learned about 
how much the optimal gains depend on the I. C. Is. 

One way to have quantitative results would be to have: 

e Several values for the I. C. on a given state variable which covered 
a typical range. 

e A gain grid with increments such that to each different value of a 

given I. C. would correspond a different best controller in the 
grid; 

l The best controller systematically related to the magnitude of the 

I. c. 

The following results presented in Section 3 substantially have these properties. 

RESULTS OF MINIMAX COMPUTATIONS 

Initial gain grids were chosen which contained the controllers in I3 and I5 
specified in the right half of Figure 12, Report 12003-FTRl. The grid 

sizes had increments of about ten percent except that the K1 increment in 
13 was about 30 percent. In only three iterations of minimax computations 

for each interval, the gain grids and sets of I. C. Is listed in Tables 3-l and 3-6 
were attained. The results will be considered from the points of view of 
control costs, eigenvalues (stability), and controller gains. It will be seen 
that the non-zero I. C. Is lead to controllers of slightly higher cost, and 

more stability. Both of these results were anticipated. 
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Table 3-l. Gain Grid and Initial Conditions for Interval I3 

Gain 

K1 

K2 

K3 

F = 0 

@'deg 

$ deg/sec 

. 
2 m/set 

-1-i --- 
0. 50 

1. 4 

I -0.13 

=.- 

G 

2 

0.55 0.60 

1. 6 1. 8 

-0.12 

I Index 

3 

-0.11 

Initial Conditions 

Amount 

0. 1 

0.2 

0.4 

0.02 

0.04 

0.08 

0.1'7228: 

0.34457c 

0.69814C 

Q(O) rad 1 (0) rad/sec 

0 0 

0.001745 0 

0.003490 0 

0.006980 0 

0.000349 

0.000698 

0.001396 

0 0.172285 
0 0.344570 

0 0.698140 

0.65 0.70 

2.0 2.2 

-0.10 -0.09 

i(0) m/set 

1 
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Identification of Controllers 

For convenient reference to controllers in the following discussion, a given 
controller in Tables 3- 1 and 3-6 will be .identified by the index values of its 

three gains, rather than by the gain values themselves. For example, in 

interval I3 (Table 3- l), the controller with gains (I$, K2, K3) = (0. 50, 1.4, 

-0.09) will be designated as K(115). This happened to be the best controller 
for zero I. C. It will be noted that all three of its values Iie on the boundary 

of the control box (hence, this controller is at a corner of the box), rather 

than on the interior as was postulated on page 37. This presents no 

problem since it was established in arriving at the gain grid for I3 that the 

best controllers for non-zero I. C. Is would lie toward the interior of the 

gain box. Similar comments apply for I5 (Table 3-6), where the best 

(p = O)-controller (which was K( 154)) was on a face of the gain box. 

Costs, Gain Changes, and Closed Loop Poles 

Results of minimax computations for the various I. C. Is are given for I3 

and I5 in Tables 3-2 and 3-7 respectively. Each table gives the costs and 

closed-loop poles of the three best controllers in the grids for ten I. C. Is. 

The results for each interval will be discussed separately and supplementary 

tables and graphs will be given to illustrate various conclusions. 

Interval I3 

Some facts and general conclusions from Table 3-2 are as follows: 

0 Only 13 .different controllers (out of 30 possible) are represented 

in Table 3-2. Of these, only eight are needed to provide the two 

lowest cost controllers for ten I. C. Is. 
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Table 3-2. Three Best Controllers, Their Costs, and Closed Loop Poles 
for Ten Initial Conditions in Interval I3 

x0= 0 

I@( = 
0. l’deg q 

0.001745 

loI C5(234) = 0.04538 
0.2 deg = C3(115) = 0.04598 
0.00349 C5(324) = 0.04606 

I@1 = 
0.4 deg = 
0.00698 

I@1 = 
0.02deg = set 
0.000349 set-l 

Id = 
0.04&E& 

set 
0.000698 set -1 

lil = __ 
0. 08 deg I 

set 
0.001396 set -1 

1; 1 = 
0.1723 
m/set 

IZI = 
0.3446 
m/set 

&I = 
0.6891 
m/set 

Controllers 
and Costs 

C&a Km, Kn) = 
C(1, m, n. ) 

C5(115) q 0.04347 
C5(254) = 0.04424 
C5(154) = 0.04446 

C3(115) = 0.04363 
C5(244) = 0.04473 
C6(234) = 0.04530 

C3(224) = 0.04662 
C5(214) = 0.04711 
C5(314) = 0.04712 

C,(115) = 0.04350 
C5(244) = 0.04468 
C,(144) = 0.04484 

-0.00018 
-0.00018 
-0.00128 

-0. 00110 
-0.00018 

0.00111 

C5(115) = 0.04358 
C5(244) = 0.04470 
C5(234) = 0.04528 

-. -. _ 
C5(244) = 0.04475 
C5(234) = 0.04533 
C3(115) = 0.04548 

-0.00110 
-0.00018 
-0.00018 

-0.00018 
-0.00018 
-0.00110 

C3(244) = 0.04485 -0.00018 
C5(234) = 0.04535 -0.00018 
C,(115)= 0.04555 -0.00110 

C3(234) = 0.04609 
C5(234) = 0.04621 
C,(214) = 0.04716 
- 
C3(542) = 0.05167 
C5(53?) = 0.05209 
C3(552) = 0.05212 

Closed Loop Poles 

Real 

-0.00110 
-0.00018 

0.00111 

-0.00110 
-0.00018 
-0.00018 

_ll 
-0.00018 
-0.00110 
-0.00127 

-0.00018 
-0.00018 
-0.00018 

0.00018 
0.00018 
0.00017 

I 
7 
I 
T 
T - 
I 

Complex Pair 

-0.2800 *i. 0.3278 
-0.4367 *is 0.1381 
-0.4374 fi. 0.1146 

-0.2800 l i. 0.3278 
-0.3977 *is 0.2250 
-0.3587 hi. 0.2813 

-0. 3587 f i - 0. 2813 
-0.2800 f i - 0.3278 
-0. 3192 f i . 0. 3518 

-0. 3197 f i . 0. 3235 
-0.2807 f i . 0. 3565 
-0.2802 f i . 0. 3824 

-0.2800 *i. 0.3278 
-0. 3977 fi . 0. 2250 
-0. 3984 f i - 0. 1779 

-0.2800 fi. 0.3278 
-0.3977 *i- 0.2250 
-0. 3587 f i . 0.2813 

-0. 3977 *i . 0. 2250 
-0. 3587 f i - 0. 2813 
-0. 2800 f i - 0. 3278 

-0. 3977 *i - 0.2250 
-0.3587 ki. 0.2813 
-0.2800 fi- 0.3278 

-0.3587 *is 0.2813 
-0.3197 l i . 0.3235 
-0.2807 *i* 0.3565 

-0.3984 *i. 0.3300 
-0.3594 *i. 0.3707 
-0.4374 f i * 0.2780 

c and Wr, of 
Complex Poles 

w n 

0.6496 0.4311 
0.9535 0.4580 
0.9997 0.4375 

0.6496 0.4311 
0.8707 0.4570 
0. 7869 0.4559 

0. 7869 0.4559 
0.6496 0.4311 
0.6719 0.4750 

0.7030 
0.6187 
0.5910 
- 
0.6496 
0.8704 
0.9131 

0.4548 
0.4537 
0.4741 

0.4311 
0.4570 
0.4363 

0.6496 0.4311 
0.8704 0.4570 
0. 7869 0.4559 

0.8704 
0. 7869 
0.6496 
- 
0.8704 
0. 7869 
0.6496 

0.4570 
0.4559 
0.4311 

0.4570 
0.4559 
0.4311 

0. 7869 0.4559 
0.7030 0.4548 
0.6187 0.4537 

0.7701 0.5173 
0.6960 0.5163 
0. 8439 0.5183 

1 
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8 For eight of teri initial conditions, the three best controllers are 

asymptotically stable. 

0 Two of the three best (X0 = O)-controllers were asymptotically 

stable. In earlier gain grids, the (X0 = O)- controllers always had one 

positive closed loop pole; e. g., see Figure 12 of Report 12003-FTRl. 

One iteration of grid mapping resulted in the grid (Table 1) for which 

results are shown here. 

The increasing of I. C. ‘s leads to systematic changes in the minimax controller 

gains. The simplest illustration is shown by looking at the progression of best 
l 

controllers as I. C. ‘s on the state variable 9 progress from 0 to the maximum 

value considered. Table 3 shows the collection. 

Table 3-3. Be&Controllers for I C. ‘s on $ 

1 ;“I deg 
set 

0 

.02 

.04 

.08 

Best Controller 
and Cost 

C5(115) = .04347 

C5(115) = .04350 

C5(115) = .04358 

C5(244) = .04475 

Closed Loop Poles 

Real 

-. 00110 

-. 00018 

I 

Complex Pair 

-. 2800 f i. 32.78 

-. 3977 f i. 2250 

c and W 
Poles n 

of Complex 
I 

P 

. 6496 

7, 

-8707 

It is seen that as I@ I increases, the gain index (hence the gain) is: 
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e Monotone increasing * on Kl 

0 Monotone increasing-:; on K2 

ia Monotone decreasingx< on Kg 

With minor modification, the same result is true for I. C. ‘s on $ and 5. The 
modification in the case of I. C. ‘s on i is that one should choose the second best 

controller for the smallest non-zero I. C. in order for all gains to be monotone 

with ii0 I. The cost penalty paid for this substitution is only about one percent. 
Table 4 il ustrates the gain changes as 12” 1 increases. 

_ _. .-- 
0 

. 1723 

.3446 

-6891 

Table 3-4. Best Controllers for I. C. ‘s on i 

Best Controller 
and Cost 

C,(115) = .04347 

*+C3(234) = . 04535 

C3(234) = .04609 

C,(542) = . 05167 

Closed Loop Poles 

Real 
~. 

-. 00110 

-. 00018 

I, 

.00018 

Complex Pair 
_ 

-. 2800 f i.‘3278 

-. 3587 f i. 2813 

,t 

-. 3984 f i. 3300 

c and UJ of Complex 
Poles n 

. 6496 

.7869 

-7701 

w 

.4311 

.4559 

IT 

. 5173 

1 

The same situation is true for I. C. ‘s on @. 

:: More accurate terminology is monotone non-increasing/non-decreasing. The 
simplification used above is common. 

-::+ Second best controller for this I. C. 
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Table 3-5. Best Controllers for I. C. Is on # 

:F Second best controller for this I. C. 

Comparison of Tables 3-3, 3-4, and 3-5 shows that all minimax gains are 

monotone with increasing absolute values of I. C. ‘s, and also that each 

minimax gain is monotone in the same direction with every I. C. ; i. e. , 

0 Kl is monotone increasing with 1 I. C. I, 

0 K2 is monotone increasing with 1 I. C. I, 

l K3 is monotone decreasing with 1 I. C. I. 

The total increases of costs over the ranges of I. C. ‘s are about 2. 9 percent 

in Table 3-3, 18 percent in Table 3-4, (8. 1 percent in Table 3-4 if the largest 

value of i”is omitted) and 7.4 percent in Table 3-5. 

As far as closed loop poles are concerned the indication from Table 3-3, 3-4, 

and 3-5 is that the real pole moves from -0.00110 to the right as II. C.[ increases. 

It remains negative except for the largest value of 2” . The behavior of the I I 
complex poles is most easily interpreted from the damping ratio t and natural 

frequency on. It is seen that, with the largest value of I i” I again excepted, 

both c and wn increase with II. C. I. 
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The uniform behavior of gains, real poles, damping ratio, and natural 

frequency with increases in magnitude of any of the initial conditions, and the 

small variation in control costs with initial conditions suggest the possibility 

of picking one fixed-gain controller for 13 which is good for a large number 

of non-zero I. C. ‘s. A first candidate might be the (X” = o) controller itself 

(K( 115)), since it occurs more often in T’abIe 3-2 than any .other (seven times). 

But it turns out that this controller gives some rather high costs for the 

largest values of IQ0 1 and 1 go I. A better compromise controller is K(234) 

(which occurs six times in T.able 3-.2). For everyI. C. considered, the costs 
for K( 234) exceed those of K( 115) for X” = o by less than 26 percent, less 

than 12 percent if the largest value of Ii0 I is excepted, and less than 6 per- 

cent if the largest values of both Ii0 I and 16” I are excepted. 

Thus, for interval 13, it has been found that, for the gain grid considered: 

(1) All gains are monotone non-decreasing/non-increasing with the 
magnitude of I. C. on any state variable; 

(2) All minimax controllers have a negative real and a stable complex 

pair of closed loop poles; 

(3) The real pole is much closer to the origin than the complex pair 

and its distance from the origin decreases with increasing magnitude 

of I. C. ‘s (-0. 0011 < Z. ( - 0. 00018); - 

(4) The damping ratio and natural frequency of the complex pair increase 

slightly with increasing magnitude of I. C. ‘s (0. 64 < < c 0. 87 and - - 
0.43 5 On rad/sec ( 0. 57); 

(5) It is possible to select one fixed gain controller which gives good 
performance for each I. C. ; 

(6) One I. C., the maximum value of lz” I considered, must be excepted 

for conclusions (2), (3), (4), and (5). It is shown in MAGNITUDE OF 

INITIAL CONDITIONS that this exception is probably not serious 
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Since the only exceptions concerned Z” , we may also conclude that the 

selection of minimax controllers for bounded winds is not particularly 
. 

sensitive to I. C. ‘s on 6 and 6 in interval IQ. This bears the qualification 

that a single compromise controller which is to be used for all I. C. ‘s will 

give better performance if the effect of I. C. ‘s on selection of minimax 

controllers has been considered. This qualification is apparently not a severe 

one, since in this example where good (X” = o) controllers were known to 

begin with, only three iterations of minimax computations were required to 

arrive at the results presented. 

Interval I5 

The selection of minimax controllers in interval I5 was more strongly in- 

fluenced by I. C. ‘s than was the case in interval IQ. This is shown by the 

fact that 22 different controllers are represented in Table 3-7, while only 13 

occurred in the corresponding table for interval I3 (‘Table 3-2). Nevertheless 

it will be seen that the conclusions are very similar for both intervals. 

Table 3-8 is extracted from Table 3-7, and serves to illustrate the conclusions. 

Inspection of Table 3-8 shows that, again, all gain indices (hence gains) are 

monotone with increasing II. C. I. 0 n all three state variables, as II. C. I 

increases, 

(1) K1 is monotone increasing, 

(2) K2 is monotone decreasing, and 

(3) K3 is monotone decreasing. 

Again, the cost penalty for substituting second best controllers in two spots was 

well below one percent. 
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Table 3-6. Gain Grid and Initial Conditions for Interval I5 

K1 -1. 2 -0. 9 -0. 6 -0. 3 0 

K2 1. 7 2.. 0 2. 3 2. 6 2. 9 

K3 -0. 070 -0. 065 -0. 060 -0. 055 -0. 050 

Initial Conditions 
.- 

* Amount 6 (0) rad Q (0) rad/sec Z (0) m/set 

X" = 0 0 0 0 

0. 2 0. 00349 0 0 

@ deg 0. 4 0. 00698 0 0 

0. 8 0. 01396 0 0 

0#04 0 0. 000698 0 

i deg/sec 0. 08 0 0. 001396 0 

0. 16 0 0. 002792 0 

0. 308865 0 0 0. 308865 

i m/set 0. 617730 0 0 0. 617730 

1. 23546 0 0 

I 

1. 23546 
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Table 3- 7. Three Best Controllers, Their Costs, and Closed Loop Poles 
for Ten Initial Conditions in Interval I5 

T Controllers and Co&f 
C UC+,&; KJ = 

Closed Loop Poles comments 

0.3291 

0.3021 

0.3288 
- 

0.0399 

0.0379 

0.1559 

0.0418 

0.0399 

0.0436 

0.0436 

0.0418 

0.0399 

0.2796 

3.2798 

3.2184 

I. 2009 

I. 1552 

I. 2392 
-__ 

I.1267 

I.1559 

I.1394 

I.2798 

). 2636 

I. 2184 

I. 1552 

I. 2396 

I. 2188 

I. 0418 

I_ 1409 

8.1566 

-_-. - ..- 

-0.0186 

-0.0191 

-0.0183 

-0.0570 

-0.0548 

-0.0259 

-0.0592 

-0.0568 

-0.0613 

-0.0613 

-0.0592 

-0.0568 

-0.0191 

-0.0194 

-0.0206 

-0.0211 

-0.0249 

-0.0207 

-0.0263 

-0.0259 

-0.0257 

-0.0194 

-0.0207 

-0.0206 

-0.0249 

-0.0212 

-0.0211 

-0.0592 

-0.0274 

-0.0268 

c3 (154) = 0.03909 

C5 (235) = 0.03914 

c3 (155) = 0.03925 

-1.5457 

-1.2661 

-1.5457 

-0.7142 

-0.7144 

-0.8613 
-.- 

-0.7141 

-0.8407 

-0.7140 
.- 

-0.7140 

-0.7141 

-0.8407 

4 
I. 
I 
I 

C3 (512) = C5 (512 

-- 
-1.3696 

-1. 3696 

-1. 1809 
__- 

-1.2891 

-0.8613 

-1.0757 
-- 

Choose C5 (244) to 

make gains monoton 

with C 
.- 

-1.0837 

-0.8613 

-0.9710 

-1. 3696 

-0.9740 

-I. la09 

-0.8613 :hoose C3 (324) to 

-1.0757 I-lake gains monotonf 

-1.1809 vith 2' 

-0.7141 

-0.9710 

-0.8612 

0 = 0.2 deg = 
0.00349 rad 

C5 (513) = 0.04352 

c3 (514) = 0.04389 

c3 (414) = 0.04400 

0= 0.4 deg = 
0. 00698 rad 

C3, 5(512.) = 0.04496 

C3 (521) = 0.04568 

C5 (511) = 0.04612 

0=0.8&g= 
0.01396 rad 

C3 (511) = 0.05366 

C3 (512) = 0.05499 

C3 (521) = 0.05570 

C3 (245) = 0.04071 

C5 (244) = 0.04073 

C5 (335) = 0.04076 

C5 (344) = 0.04182 

C5 (415) = 0.04186 

C3 (325) = 0.04189 

i=o.o.+deg = 
set -1 

0.000698 set 

~.O.O~!i% = 
set -1 

0.001396 set 

8. 0. 16 deg = 
=ec -1 

0.002792 se-2 

c5 (433) = 0.04340 

C5 (414) = 0.04346 

C3 (424) = 0.04347 

C5 (244) = 0.04067 

C5 (315) = 0.04067 

C3 (335) = 0.04072 

c3 (415) = 0.04198 

C3 (324) = 0.04206 

C3 (334) = 0.04216 

i = 0.308865 

i = 0.61773 

In 
m?c 

C5 (512) = 0.04482 

C3 (422) = 0.04497 

c3 (413) = 04530 

i = 1.23546 

m - 
set 
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Table 3-8. Extract of Table 3-7 

Best ControUerandCost 

C3 (512) = 0.04496 

c3 (154) = 0.03909 

+C5 (244) = 0.04073 

C5 (344) = 0.04182 

c3 (154) = 0.03909 

C5 (244) = 0.04067 

*C3 (324) = 0.04026 

C5 (512) = 0.04482 

*Second Best Controller for this I.C. 
11 

0.3291 

0.0399 

0.0418 

0.0436 

0.3291 

0.2798 

0.2009 

0.1267 

0.3291 

0.2798 

0.2396 

0.0418 

Closed Loop Poles 

-0.0186 

-0.0570 

-0.0592 

-0.0613 

-0.0186 

-0.0194 

-0.0211 

-0.0263 

-0.0186 

-0.0194 

-0.0212 

-0.0592 

-1.5457 

-0.7142 

-0.7141 

-0.7140 

-1.5457 

-1.3696 

-1.2891 

-1.0837 

-1.5457 

-1.3696 

-1.0757 

-0.7141 
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I llllll II Ill1 Ill I I llllll 

The locations of all closed loop poles for the minimax controller in Table3-8 

follow a definite pattern. In I. C. ‘s on i and Z, a given pole continues to 

move in the same direction as II. C. 1 increases. In particular, the positive 

pole moves toward the origin as b. C. 1 increases. For I. C. ‘s on 6, even 
the first non-zero I. C. results in minimax controllers whose poles are 

substantially different from those of the (X” = O)-controller. Of most 

interest is the positive pole, which is only about one-tenth as far from the 

origin for non-zero I. C. ‘s as when X” = 0. And when @” f 0, all pole 

locations are quite similar. 

The total cost increases over the ranges of the I. C. ‘s in Table 3-8 are .37 

percent on Ido I(15 percent if the largest value of I@” 1 is omitted), 11 per- 

cent on I$” 1, and 14.7 percent on 1 Z” I. The most popular controller in 

Table 3-7 is K(512). It is therefore a candidate to be considered as a com- 

promise controller for all the I. C. ‘s. It looks surprisingly good: the costs 
for K(512) exceed the (X” = 0) -cost of K( 154) by about 41 percent; but if the 

largest value of 140 I is excepted, the cost excess is only 15 percent. These 

values are about the same as the cost increases for the minimax controllers 

in the grid over the ranges of the I. C. ‘s. 

Thus for interval I5 it has been found that, for the gain grid considered: 

(1) 

(2) 

(3) 

(4) 

(5) 

All gains are monotone non-decreasing/non-increasing with the 

magnitude of I. C. Is on the state variables; 

All minimax controllers have real poles and one of them is positive; 

The distance of the positive pole from the origin decreases with 

increasing magnitude of I. C. ‘s (0. 0418 5 Z. 5 0. 3291) 

It is possible to select one fixed gain controller which gives good 

performance for each initial condition. 

One initial condition, the maximum of 1 doI considered, must be 

excepted for conclusions (3) and (4). 
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MAGNITUDE OF INITIAL CONDITIONS 

It remains to be shown that values of I. C. ‘s chosen are, in some sense, 

“reasonable”. The initial values of I. C. ‘s were chosen from previously 

computed cost data for X” = 0 controllers. 

The natural output of the minimax computations is a set of cost items, each 

of which is proportional to the maximum amplitude which a cost variable can 
achieve with a bang-bang wind disturbance. Furthermore, the switching 

times are not in general the same for two different cost variables. Thus, a 

set of cost items (for a given controller) does not represent the terminal - 
values of a response, but rather the maximum values the cost variables can 
achieve at any time during a set of responses of a given time duration. 

Maximal amplitudes of individual cost variables were readily available but 

response data was not, so it was decided to choose initial values of state 

variables::< for 13 amd I5 equal to one-third their maximum amplitudes with 

zero initial conditions for 12 and 14, respectively. The rationale was that 

maximal responses correspond loosely to “three-sigma” responses and that 

one third of these amounts would be more “typical” of state variable ampli- 

tudes at the end of I2 and 14, hence at the beginning of I3 and 15. 

A second estimate of suitable I. C. values for I$ and Z was made from response 
curves of a similar vehicle subjected to five different synthetic wind profiles. 

These data were supplied by personnel at the George C. Marshall Space 

Flight Center. The cross-wind velocity in each profile built up at a certain 
rate from zero to a specified maximum value which occurred at times 

t = 48, 56, 64, 72, and 80 seconds respectively. A gust with an altitude 
depth of.3 km was superimposed on each profile at the instant it reached its 

specified maximum value. This maximum value corresponded to an attack 

angle due to wind ow (= y) of about 10. 3 degrees. 

::: The state variables are a subset of the cost variables 
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The left half of Table 3- 9 shows the response amplitude of @ and i from the 

M. S. F. C. data at t = 36 and t = 60 (the beginning times for I3 and 15, 

respectively). The middle section shows the values obtained from minimax 

cost information, and the right section shows the values actually used. 

The top half of the table shows that, for 13, the range of chosen initial values 

for d’ is about right. However, the largest initial value for i substantially 

exceeds that estimated either from responses or cost data. This fact has 

the effect of strengthening previous conclusions for interval 13, since it was 

this largest value of 12’ I which required the several exceptions to that list 

of conclusions. 

In interval I5 (bottom half of Table 3-9), the chosen range of I. C. ‘s on i is 

ample. The chosen range of I. C.‘s on @ is suitable when compared with cost 

data, but is not large enough to encompass the attitude responses from the two 

wind profiles peaking at 48 and 56 seconds. This fact weakens the previous 

conclusion concerning the possibility of using a single fixed-gain controller 

for all I. C. in interval 15, since the maximum value of Iti0 I used was already 

excluded from that conclusion. It therefore seems likely that some technique 

such as gain modification with the amplitude of d would be advisable in interval 

I5’ There also exists the possibility that further grid mapping would lead to 

a more desirable grid from which to choose controllers. 

CONCLUSIONS 

In general, the results are at least as good as anticipated, especially in 

interval 13. Starting in that interval with an unstable but good (X” = O)- 

controller, only three iterations of grid mapping yielded a gain grid in which 

the best controllers for all I. C. ‘s (both zero and non-zero) were stable and 

the changes in gain were monotone with increasing values of I. C. ‘s on each 

state variable. A bonus result was that the gains changed in the same direction 
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Table 3-9. Relative Magnitudes of I. C. ‘s 

- 
From Cost 
(1/3maxam 

IS 

- 

t= 36 
--- z=ez 

0.222 

t= 60 

0.65 / 

- 

Data 
lplitude From Responses to Wind Profiles Values Chosen Inte ma’ 

‘refile Pea 
at t i” 

Se= 

46 

56 

64 

12 

80 

t t= t= 36 

-0. 0.2 

0 0 

0 0 

0 0 

0 0 

t=l t= 60 

$ $ 

-1.e 0.7 

-1 0.8 

-0. i 0.2 

0 0 

48 

56 

64 

72 

80 

I3 corresponds to 36 _< t < 56 

I5 corresponds to 60 2 t < 68 

@” 1 deg ii0 I m 
se-2 

t= 36 t= 36 

y,,, de y, deg 

t= 36 
zcrxz 

3.2 

0 

0 

0 

0 
-.-~ 

t= 60 

* 

10.3 

5.7 

3.4 

0 

t= 52 

10.2 

6. 1 

3.3 

0 

0 

t: 68 

* 

* 

10.3 

5.5 

2 

0. 1 0.172285 

0.2 0.344570 

0.4 0.696140 

t= 60 
- 

0.2 

0.4 

0.8 

t = 60 

0.308865 

0.617730 

1.23546 I5 

law I disturbance always 
10.4 deg * Not shown in data 

-. 
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-m I m-8. ---. -..-_-_ _--. -__-.-._ 

with I. C. ‘s on every state variable. This suggested the possibility of a 

compromise controller in the grid which would give good performance for all 

I. C. ‘s, and one such controller was found. 

The same conclusions are applicable to interval I5 except that the controller 

started with was unstable and the minimax controllers for non-zero I. C. ‘s 

were still unstable, but much less so. 

The technique of choosing minimax controllers using zero I. C. ‘s, and then 

using these as a starting point for considering non-zero I. C. ‘s proved to be 

efficient. 
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SECTION 4 
EXTREMAL BOUNDED AMPLITUDE, BOUNDED-RATE INPUTS 

FOR A HARMONIC OSCILLATOR 

The problem considered is the determination of extremal inputs to a forced 

harmonic oscillator described by equation (1). 

j; + y = v(t) (1) 

The system is assumed to be initially at rest, i.e., y(0) = y(0) = v(O).= 0. 
The input, v(t), is admissible if it satisfies the following constraints for 
t ’ 0: - 

0 v(t) is continuous, with piece-wise continuous derivative v(t) 

. Iv(t) I 2 1 

l I&)) zk/71, k>O 

An extremal input is an admissible input defined on the interval LO, T 1 that 

maximizes [y(T) cos 8 + y(T) sin 81 cos @+ v(T) sin 4 for some T, 8 and # 

where T > 0, 0 2 8 C 277 and 1~1 < ;. Extremal inputs may be characterized 

as follows. The response of the system (1) to an input v(t) forms a trajectory 

in a three dimensional Euclidean space with coordinates of a point on the 

trajectory given by y(t), y(t) and v(t). Let the set of attainability at t = T be 

the set of all endpoints (points with coordinates y(T), y(T), v(T)) of tra- 
jectories corresponding to admissible inputs on the interval 0 C t < T. Such - - 
a set is closed and bounded. An extremal input on the interval 0 _< t _< T is 

an admissible input to which corresponds a trajectory with an endpoint that 
is a boundary point of the set of attainability. Hence, an equivalent definition 

of an extremal input is an input that is a time optimal regulation input with the 
time reversed. 
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The problem can easily be formulated as one with a phase constraint. Let 
u(t) = v(t) and introduce the vector x(t) with components xl(t) = y(t), x,(t) = 

y(t), x3(t) = v(t). Then equation (11, with initial conditions specified and 

admissible inputs, may be represented by 

j, = Ax + bu, x(O) = 0, lu I 5 k/IT, where: (2 

The phase constraint is then Ix3 I 2 1. A discussion of the development of 
necessary and sufficient conditions for extremal inputs in problems of this 

type is given in reference 1, pp. l-2. For this particular problem these 

conditions say, essentially, that extremal inputs are given by: 

u(t) = (k/r)sgn [$(t)bl (3) 

where sgn(0) = 0 and G(t) is a piecewise continuous solution of an adjoint 

equation with a piecewise continuous right-hand side. The discontinuitie s 

are allowed only at values of t which are endpoints of maximal intervals in 

which the corresponding response has Ix3 I = 1. The points of discontinuity 

of & can be further restricted to occur only at right-hand endpoints of such 

intervals. A more detailed statement of these conditions will be given in the 

section on APPLICABLE THEORY. Also it will be shown that allowing at most 

one discontinuity in $J at t = T, the extremal input with respect to e(T) x(T) is 

given by (3). Thus, since the response x(T) depends only on the input on the 

open interval (0, T), extremal inputs correspond to continuous solutions of 

piecewise continuous adjoint equations. 

This problem is chosen for two reasons. The first is that it presents a case 

in which the number of segments or arcs of extremal responses which lie 

on the phase constraint can be made arbitrarily large. This makes it possible 

to determine that such segments are interrelated. The second is that an 

explicit solution can be obtained. 
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In the DERIVATION OF EXT.REMALS the theory will be used to treat a 
particular case. Ranges of values of k and 8 will be chosen and the 
extremal inputs will be derived for all values of the parameters T and $J. 

Formulas for extremal inputs are given in EXPLICIT REPRESENTATION 
OF EXTREMALS for the parameters k, T, 8 and $ with ranges k > 2.5, 

T >O, 0 < 8 cnand I@I < ;. - 

The results are then summarized in the CONCLUSIONS. 

APPLICABLE THEORY 

The necessary conditions for the present problem will be based on general 

necessary conditions given by Gamkrelidze, references 2 and 3, and 

improved by Bryson, Benham and Dreyfus, reference 4. Then the necessary 
conditions given by Russell and Schmaedeke, reference 5 will be cited. 

Comparison of these necessary conditions with sufficient conditions obtained 

by Russell, reference 1, show that the necessary conditions are also sufficient. 

The notation in reference 3 will be followed with the exception that the 

components x0 and Go will not be included in the vectors x and #. Thus 
f(x, u) = Ax + bu. The phase constraint is represented by requiring x to 

lie in the region G represented by: 

G = fx:g(x) = (x.,)~ - 1 _< 0 3. 

Then p(x., u) = 2x3u and 2 = (0, 0, 2~). H(#, x, u) = #f(x, u) and m($, x) = 
$Ax, M($, x) =u”E$ H(#, x, u), where U = {u: lu 1 c k/n]. 

(4) 

Theorem 25 of reference 2 may be stated as follows (taking note of theorems 

1, 22 and 24 of reference 2): 
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Suppose that x(t) is an optimal trajectory of equation (2), corresponding to 

the optimal control u(t), and that x(t) lies entirely in G for 0 _< t _< T and 

contains a finite number of junction points. Also suppose that each of its 
sections which lies on the boundary of G is regular. Let 0 C 71 2 r2 < * * * 

< 72q- 1 5 Tsq - C= T denote the junction points. Then there exists a piecewise 
continuous vector #J(t) = ($J,(t’). #J (t), 2 #J (t)) and a piecewise continuous, 3 
piecewise smooth scalar-valued function x(t) such that: 

h= aH(k Xi U) 

iii- 
= f(x, u) = Ax + bu 

w 
(5) 

d# _ aHCdJ, X, U) -- - + xct, A(t) ap(x’ u, = - $ A + X(t)X(t) (0, Q,,2u) (6) 
dt ax ax 

H(#J(t), x(t), u(t)) = M(#(t), x(t)) [l - X(t) 1 + X(t)m($(t), x(t)) (7) 

where x(t) is equal to zero when g(x(t)) CO and is equal to one when g(x(t)) = 

0, A(t) = a $(t)b sgn [x,(t) 1. The vector $(t) is zero nowhere on CO, ~1. On 

’ 2i- 1 -- - C t < 72i, g(x(t)) = 0 and $+( 72i- l) is tangent to the boundary g(x) = 0 

at x( T2i- 1) and dA(t)/dt < 0 for 7 2i- 1 et< 7 2i’ i = 1, 2, . . . , q. Furthermore, - 
at junction points the following jump condition is satisfied: 

either $J+ (Ti) = #J- (Ti) + Pi grad g(x(‘i’), (8) 

or $- (pi) + Pigrad g(x(Ti)) = 0, Pi # 0, (9 

where pi is a real number. 

In reference 4 is is shown that the jump condition (8) and (9) may be 

replaced by: 

58 



#I- (Tag) = $+ (Eli) + Pigrad g(X(‘2i)) 

iUS 46 can be defined so that it is continuous at 7 2i- 1’ i- 1, 2, . . . , q. 

summary of the se results for the problem being considered is that if x(t) 

Id u(t) are optimum then: (Introducing the notation To = 0 and T2q+l = T, 

h 
CT). 

quation (5) is satisfied (dx/ dt = Ax + bu) and there exists a piecewise contin- 

:jus G(t) such that: 

2 = - $A + $ X(t) #,(t)sgn[x,(t) l(0, 0, 2u) 
dt 

here x(t) = 0 if T2i <t C T2i+l, and X(t) = 1, if T2i+l _< t _< T2i, i=O, 1, 2, . . . , q. 

urthermore u(t) = 0 and g(x(t)) = 0, if X(t) = 1 and u(t) = (k/n)sgn[$3(t) 1 and 
:x(t)) < 0, if x(t) = 0. The first two components of $J(t) are continuous and the 

tird is continuous except possibly at T2i, i=l, 2, . . . , q. At these points 

3-(T2i) 2 #i(T2i) + 2c(ix3(T2i). Since x(t)u(t) = 0 for each t c CO, Tl, equation 

2, may be written as: 

d$/dt = - $A 

ote that this formulation gives an adjoint equation with a continuous right- 
3nd side and that u(t) differs from (k/V)sgn [$(t)bl when X(t) = 1, since if 

It) = 1, u(t) = 0 and $3(t) F 0. A slightly different formulation can be made 

hich will change these results. In the above formulation the constraint was 
djoined by setting: 

(101 

(11) 

(12) 

(13) 

h(#, x, u) = H(#, x, u) - X(t)hP(x, u) (14) 

59 



where p(x, u) = dgCx(t) l/dt. Adding the constraint by setting: 

h(#,x,u) = Ht#, x, u) - tit> t g(x) 

yields an equivalent formulation, reference 6. 

If the formulation indicated by (15) were used then #J(t) would satisfy: 

d#/dt = - $A + $grad g(x) = - #A + xc(O, 0, 2x3) 

where c = i$J2sgnx3. Also u(t) would satisfy: 

u(t) = (k/ IT)sgn[$3(t) I, o < t < T 

where sgn(0) = 0. 

The necessary conditions given in reference 5 are also applicable to this 

problem. They give further information regarding extremal inputs. These 

results may be summarized in the following definitions and theorems from 

reference 5 (stated for the present problem in terms of notation given above). 

Definition 1 

(15 

(i6: 

(17: 

The input u. is extremal if there exists a non-trivial (continuous) solution 

J 
T 

# of ( 13) such that G3(t) u,(t) dt = m;xjT $3(t)u(t)dt, The maximization is 
0 Ot 

taken over all u with lu(t) 1 _< k /a and I / u(7)d71 _< 1 for 0 <t CT. 
0 
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Definition 2 

Let u(t) be an admissible input on the interval LO, T 1. An interval of type B 
for the input u is a maximal closed subinterval of the interval Go, T 1 on 

which Iv(t) 1 = 1. (v(t) = u(7)d73. 

Definition 3 

An interval of type PI for u(t) is a maximal closed subinterval of [O, T I in 
the interior of which Iv(t) I < 1. 

Definition 4 

An interval of type P2 for u(t) is a maximal subinterval of [O, T 1 whereon 

Iv(t) I # 1 and lu(t) I = k/ ?r and sgn [u(t) 1 is constant. 

Theorem 1 

Let u(t) be an extremal input and assume Iv(t) I = 1 on a subinterval of 

CO, T 1. Then, on that subinte rval: 

v(t) [d$3(t)/dtl _< 0. 

Theorem 2 

(18) 

Let u(t) be an extremal input. Then lu(t) I = k/r, almost everywhere, on 

an interval of type PI for u(t). 
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Theorem 3 

Let u(t) be an extremal input and suppose there exists an interval I of type Pl 

for u(t) with one endpoint, say t:g, which is an interior point of CO, T 1. Then 

for tC1: 

u(t) = (k/n)sgn[ti3(t) - 4J3(t9J)1. 

Theorem 4 

tic3 

Let u(t) be an extremal input and suppose that the entire interval LO, T 1 is of 

type Pl for u(t). Then there exists a constant c such that u(t) = (k/@sgn[$3(t) -c 1 
for 0 <t CT. If there are at least two intervals of type P2 for u(t) contained 

in CO, T I, then the constant c is equal to $J,( 7) where 7 is any endpoint of an 

interval of type P2 which is in the interior of CO, T 1. 

In view of equation (13) the inequality (18) is equivalent to: 

v(tN2(t) 1 0. (20: 

Also since v(O) = x3(O) = 0, the point 0 is an endpoint of an interval of type Pl 

for any extremal input, i. e., there exists a Tl _< T such that CO, T1 1 is an 
interval of type Pl . If 71 = T then from theorem 4 it is clear that a continuous 

p(t) exists, namely p(t) = $,(t) - c, such that u(t) = (k/ r) sgnp(t) . If 7 1 < T there 

exists an integer N > 1 and a sequence 71 2 T2 < T3 < _ -‘_< ‘2N - < T such that 
[T 2i-1, T2il is an interval of type B for i = 1, 2, . . . , N. c72i, T2i+l 1 is an 

interval of type Pl for i=l, 2, . . . , N-l and if T2N CT then [‘zN, T 1 is an interval 

of type Pl. In this case defining p(t) to be equal to 0 on intervals of type B 

and to be equal to G,(t) - #,(Vk) on each interval of type Pl, where t*E(O, T) 

is an endpoint of the interval of type Pl yields a continuous function p(t) such 

that u(t) = (k/@sgn[p(t) I. Note that from Theorem 3 if [T2i, T2i+1]C(0, T) 
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I 

:hen ~3(‘2i) = ~3(‘2i+i ). Also note that the vector #J(t) with components 
$1(t), G,(t), p(t) satisfies equation (iG). The se necessary conditions can 
3e summarized as follows: if u(t) is an extremal control there exists a 
zontinuous solution #J(t) of equation (16) such that u(t) is given by equation 
:17) and on each interval where Iv(t) I = 1 the inequality (20) is satisfied. 

Extremal inputs defined by Definition 1 are interpreted geometrically in 

the statement and proof of Lemma 1 of reference 5. It is shown that if a 
non-zero vector G(t) is chosen to satisfy equation (13) over 0 <t < T, then - - 
the response x,(t) to the corresponding extremal input has the property that 

Wrhe(T) >_ WAX, where x(t) is any response corresponding to an 
admissible input on CO, T 1. This property can be maintained when Q(t) is 
taken as a solution of equation (16) if a discontinuity in #3(t) is allowed at 

t = T and G(t) is continuous on CO, T 1. This is accomplished by setting 
$3(T) equal to the value of p(T). Furthermore if the corresponding v(T) 
is less than one in magnitude no discontinuity is required. If the 
corresponding IV(T) I equals one a discontinuity may appear but the 

following inequality must be satisfied: 

v(T) [#3(Tb Q3-(T)IZ0. 

A sufficient condition for an input to be extremal which is applicable to this 

problem is given in reference 1. If IV(T) I < 1 and the time scale is reversed 
Theorem 1 of reference 1 is applicable. Consider, then, the system 

;r = Cy + do, 101 _< k/n, g(y) 5 0, 

where C = -A, d = -b, y(t) = x(T-t), w(t) = u(T-t) and in particular y(T) = 

0 and g[y(O) 1 CO. Theorem 1 of reference 1 states: 

(21) 

(22) 

Let w (t) be defined on LO, T 1 and assume cr; (t) transfers y from y(0) to 
0 in CO, T 1 with g(y) < 0, and let q(t) be a covariant vector function defined - 
and continuous on [O, T 1 with the possible exception of points tl, t2, . . . , tr- 1 
where r is an odd integer and 0 = to < tl _< t2 < . . C t,r = T. If k is odd, ” - 
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g(&t)) < 1, and if k is even g(&t)) = 1, for tcIk = [t,-1, tk 1 where t(t) is 

the response to u(t). Let Vl, V2, . . . , Vr- 1 be non-negative real numbers 
and c(t) be a function defined on CO, Tl, non-negative on each Iak. Also 
let 1 ItiT) 1 I # 0 and 

where X(t) = 

Let H(w, t) = 

rl = - vc + x(t) at) ;Ig[4(t)l, (v= grad) 

0, if tQ2k+i, and X(t) = 1, if tEIZk, for k = 1, 2, 

q+tt,) - v-ttk) = vkJ&(\) I. 

rldwforall IUI<k/Vwhent#t+ k = 1’2,. 

. 

(2: 

‘*a r- 1, 

, r-l. 

(2’ 

If H(w(t), t) = max H(u, t) for almost all tc[O, Tl, then o(t) is an optimal controller 

Ia 1 Sk/R 
Now let e(t) = -r)(T-t) and 7k = T - tk, k = 0, 1,. . . , r. Then: 

3, = - @A + x(t) CWVg[x(t)l 

#+( Tk) - +-t Tk’ = ‘kvg ‘x(t,) I 

H(w,T-t) = MT-t)dw = - J&t) (-b)w = #(t)bw 

Thus, if H[Lr!(T-t), T-t] = max [$(t)bwl where e(t) satisfies (25) and (26)’ 
Id-/~ 

then U(T-t) is optimal, i.e., u3t) is extremal. Hence the necessary conditions 

given above are also sufficient when iv(~) I< 1, since in this ease each vk = 0 

and C(t) = $$,(t)sgn[x3(t) 1 > 0 on each 12k which follows from (20). 

(2; 

(26 

(27 

In the case when iv(T) [ = 1 the theorem of Russell could be modified by 

requiring (24.) to hold only for k = 2, . . . , r-l since in this case tl = to = 0. 

This establishes that, also in this case, the inputs determined from the 

necessary condition are extremal. 

64 



I’he se results are summarized as follows: a necessary and sufficient condition 
‘or u(t) to be an extremal input is that there exist a vector Q(t), continuous 

IIn (0, T), that satisfies equation (IS), such that u(t) is given by equation (IT), 

and on each interval in which Iv(t) 1 = 1, the inequality (20) is satisfied. 

Wurthermore, #-(T) is an external normal to the set of attainability at the 
point x(T), and if $(T) is an external normal to the set of attainability at x(T), 

then J&T) = #-(T) when Iv(T) I< 1, and inequality (31) is satisfied, if Iv(T) 1 = 1. 

Now let 6(T) = (cos 8 cos 8, sin 8 cos @J, sin@ j. Then it is easily shown that 
$,(t) = cos @ sin (8+T-t) and 

92(t)sec @= 

tan o, 

cos e-cos( 8+T- t)+tan 8 + 

&tan Go-tan d), 

0, 

0, 

cos(e+T-T2N-1)-cos(B+T-t), 

cos 8-cos(@+T-t)+tanW 

6(tan (PO-tan $9 

0, 

for t = T, 

for ‘2N - <t-= T, if 72N CT 

for t = 72N, if 72N CT 

for T2N- 1zt<T2N, if 72N-1 CT (2b) 

for 7 2N-2%T2N-1’ If ‘2N-1 CT 

for T2N- 2<tq, if T2N-1=T 

for ‘2i_ 1_<‘_<‘2i, i= 1,2,...,N-1 

for 7 2i- 2Zt-<‘2i- 1’ i= 1,2,...,N-1 

where 0 = To < T1 _< T2 < . . . < Y2 ,J-l-< T2N _ 

1 

C T and 6 is equal to zero or one. 
If IV(T) I < 1, then 6 = 0, and if v(T) I = 1, then 6 = 1 and v(T) (tan @ - tan ?o) 
> 0. - Thus, u(t) is an extremal input corresponding:: to $J(T) if and only if 

+This means #J(T) is an external normal to the set of attainability at x(T) where x(T) 
is the response to u(t). 
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u(t) = (k/ n)sgn[$3(t)sec $1, 0 < t C T (29) 

where d,(t) sec.@ satisfies (28) on 0 5 t _< T, and 

Iv(t) 1 < 1, 72i-2 <t < T2i-l; i=l, 2, . . . , N, (30) 

(‘2i - ‘2i-1 ) v(t) sin (6+T-t) > 0, T2i- 1 _< t _< 72i; i= 1, 2, . . . , N, - (31) 

Iv(T~~-~) I = 1, i=l, 2, . . . ,N, (32) 

COS( 6+T- 7 2j,-2) = cos(8 + T-T 2i-1); i=2, 3,. . . ,N-1, (33) 

cos &cos( 6+T- T2N) + tan #+ G(tan Go - tan@) = 0, if T2N- 1 < T, (34a) 

cos 8 - cos(e+T-T 2N-2) + tan ti + 6 (tan Go - tan @) = 0, if T2N-1 = T, (34‘ 

tT-T2N-l ) [cos(e+T- T2N-2) - cOS( 6+T- T2N- 1) 1 = 0, 

6 v(T) (tan Ca - tan go) > 0. - 

(35) 

(36) 

Equations (32) through (35) are 2N equations in the unknown parameters, N, 

‘i, i= 1, 2, . . . , 2N, ?. and 6. The relations (23) through (31) are constraints 

which a solution must satisfy. The simplicity of this problem permits 

explicit solution of these constrained equations. The nature of T1 is 

determined in the next paragraph. 

Consider equation (32 ) with i= 1, namely, 

I’ 

Iv< TV) 1 = 1. Equations 03 ) and 

(20) yield v(T1) = (k/r) 
1 

sgn[cos(6+T-T1)-cos(e+T-t) ldt. The zeros of 

cos(e+T-T1)-cos(e+T-t)‘occur at t = 8 +T f (6 + T - T1 + 2mn) for man 

integer. Since there is at most one zero in the interval (T1 - 27r, T1), and 
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L is greater than two, T1 must be less than 2a. Hence, in the interval (O,Tl), 

l(t) can change sign at most once. Therefore, either T1 = n/k, or there exists 
in integer m. such that 0 C2(8+T+mon)-71 *<(a/k) C r1 and T1-2 [2(6+T+mo+T1 1 

n/k. That is, if T1 # w/k then there exists an integer m. such that 

T1 = ? ( &T+molT) + (R/3k) 
3 

(3% 

where m satisfies 
0 

n/2k < 8 + T + mo7T <2n/k. (38) 

Furthermore, if T1 = ?r/k there can be no zero in (0, i). Hence, there exists 
an integer m. such that 

7r 
2(e + T + m-m) - 7, 2 0 < - = 7, 5 2(e + T + m-r) + 2a - 7,. 

” I k L ” I 

This is equivalent to 

(n/k) - 71 5 8 + T + mo71 5 (r/2k). (39) 

For i=2, 3, . . . , N-l, T2i-2 and T2i-1 may be determined as follows. 

general solution of equation (33) for T2i-2 is 

The 

‘2i-2 
= e+Tf(e+T - T2i-1 +2m@ 

where m is an integer. Equations (28) and (29) yield IV(T~~-~) I = 1 and u(t) = 
(k/n)sgn[cos(8 + T - T2i-1) - cos [e + T - tl for T2i-2 C t < 72i-1. There is 

at most one sign change of u(t) in T2i- 1 - 2W < t < T2i- 1. The maximum length 

that an interval of constant sign for u(t) can have is 2a/k which is less than n 

when k is greater than 2. Thus ‘2i- 1 - ‘2i-2 must be less than 27r and is 
greater than zero by definition. Therefore, 
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‘2i- 2 = 2(9 + T) - T2i- 1 + 2miV, (40) 

where mi is such that 72i-l - 271 < 2(e + T) - T2i-l + 2min < ~~~-1, i. e., 

‘2i-1 - a<8+T+mi8<7 2i-1’ bl ) 

Thus, u(t) is of constant sign in (72i- 2, T2i- 1) and hence from (34) , 72i- 1 

= 72i-2 + (2V/k). This result, together with equation (41), yields the 

following: 

‘2i-2 = 8 + T + rni7r - (V/k) (42) 

‘2i- 1 = B+T +min+(n/k). (43) 

The integers mi can be readily determined from the relations T2 2 T1 > T2-n 

and m i+l = mi + 1 for i = 2,3, . . . , N- 1. In case T1 # n/k it is easily shown 

that m2 = m. + 1. If ~1 = n/k then m2 = m. + 2 if (n/k)-r 5 8 + T + mow < 

(2Vr/k)-7rr, and m2 q mO + 1 if (2V/k) - n < 8 + T + mo77 5 (77/2k). 

Note that if T2N- 1 < T, then equation (3.5) implies that equations (42) and (4.3) 

hold also for i = N. 

Now consider equations (34a) and (34b). Suppose d = 1, i. e. Iv(T) 1 = 1. If 

‘2N = T>T2N-1, go = 0. If T = ~~~-1 then tan go = cos (6 + T - ?2N) - cos 8, 

Go can also be determined from limiting cases when 6 = 0. Note that when 

G = $ the value of 6 is immaterial. 

Suppose now that d = 0. Equation (34) can be written as 

cos(8+T - 7 2N) = P, 
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where 

P = p(G, @) = coS6 -t- tan@. (45) 

It is clear from equation (45) that p must be restricted by the relation 

IPI _< 1. 

Thus T2N = 8 + T f [cos -’ p+ 2mnl where 0 5 cos -1 p 5 7r. Since 

kt’) 1 < 1, 72N CT. It is readily shown that T - T2N C 28. Hence, 

.T- T2Nisequalto2n- efcos -1 por -8+cos-l p. The three cases: 

8 > cos-l p, 6 = cos-‘p and 8 <cos -1 
p, will be considered separately. 

Before proceeding with the analysis of each case let it be noted that 

v( T2N) sgn [u( T2N +I = - 1 and that sgn u( T;N) = sgn d#J,+/ dt 1 = 
‘2N 

sgn[-sin(8 + T - T2N) 1. 

In the first case, 6 > cos-’ p, T - T2N = 2n - 8 f cos-‘0. Suppose 
= T + 8 - 277 - cos 

‘2N- 1 
-1 

p. Then u(t) changes sign at T + 6 - 217 + 

cos P and sgn u( T2N+) = sgn[- sin( 2a + cos-’ p) 1 = - 1. Therefore v( T2N) 

= +l and 

u(t) = 
-(k/r) ‘2N 

-1 <t<T+e-2Ucos p 

I 
+(k/ f0 T i- 8 - 277 + COS -+t<T 

The constraint Iv(t) I < 1, 72N <t CT imposes the conditions T-(T+@- 

2n+cos-lp) < T + 8 - 2n + cos -1 
‘-‘2N <-277/k, which simplifies 

to 

(2~8)/3 < cos-‘p < a/k. (4:; ) 
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Now if T2N = T + 8 - 2a + cos- ’ p, u(t) is constant on ( T2N, T) and sgn 

U(T2N +) = +1. Thus ~(7~~) = -1 and u(t) = k/n for T2N <t CT. The a. 
constraint T - T2N < 2s/k is equivalent to 

COs-‘p ’ 2~ - 8 - (2n/k) 

Notice that tie is determined by IV(T) I = 1. This corresponds to cos -1 
p = 

(2a-e)/3. from (48) or cos-l p = 2n - 8 - (2n/k) from (47). 

Incase 6= cos-‘p, T2N=T+6- 27r+cos-’ p and the results are the same 
aswhen9>cos-1pandT2N=T+e- 2Tr+ cos -IP . 

In the final case, 8 C cosslp, T2N = T + 8 - cos 
-1 

p or T + 8 - 2n + cos 
-1 

p. 

If ‘2N = T + 6 - cos-‘p, u(t) = -k/s for TzN <t CT and ~(7~~) = +l. The 

constraint In 1 C 1 imposes the condition 

CO.& < 8 + (2dk) 

If ‘2N = T + 6- 2a+cos-1p, ~(7~~) = -1 and 

k/r> 72N <t <T-t e- COS -lP 
u(t) = 

-k/n,T+e- COS -1 ,O<tCT 

The constraint (v(t) I < 1 for T2N <t CT yields the condition 

71 - (n/k) <CO.& <(2~ + 6)/3 

In this case Go, as determined by IV(T) 1 = 1, is given by cos-l/D z 

8 + 2rr/k from (48) and cos -1 p = (2Ir + @/3 from (49). 

t-47) 

(48) 

(49) 

It is concluded from the preceding analysis that the parameters f T., @ , 

6, N 3 are not arbitrary but are functions of T, 8, @ and k. One import&t 
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consideration that has been neglected for the most part in the analysis 

is the required relation between ~(7~~) = ~(7~~~~) and u(T~~+), namely 

that v(‘2i) u(‘2i ‘, < 0. Imposing this constraint will remove all the 
ambiguities that remain but requires a detailed case by case analysis. 

An example will be considered next to demonstrate the complications 
involved in deriving the totality of extremals. 

DERIVATION OF EXTREMALS 

Before proceeding with the derivations for a sample case it can be noted 

that the formula to be used for T2N depends on the value of 8. That is: 
(assuming k B 2) the interval ( 46) is of positive length if 8 $ 2n - (3n/k) 

the interval determined by (47) and 8 1 cos -1 
P has positive length if 

6 > 71 - (n/k) and the interval (49) is of positive length if 8 > n - (3a/k). 
Hence the nature of extremals will depend on the relation of 8 to the values 
2W - (37/k), n - (r/k) and 71 - (3r/k). Other such break points in 8 arise 

from considering the special cases when N < 1. The distribution of the 
break points in 8 relative to the interval CO, ~1 and the ordering of all break 

points depend on the value of k. The values 2, 2. 5, and 3 are critical 
values of k which determine the number and ordering of break points in 8. 

For example, if k > 3 the break points in 8 for 7 are 7T - (3a/k) and 
W - (n/k), whereasif k < 3 they are 71 - (r/k) and25 - (371/k). The other 

break points in 8 are 71 - (r/2k) and m7T - (5a/2k) where m = 2 if 2 <k C 
2.5 and m = 1 if k > 2.5. 

Now consider the case of k > 3 and W - (37/k) _< 8 < 7~ - (5n/2k). In this 
case as in all cases, if T _< r/k the constraint Iv(t) I _< 1, 0 _< t 5 T, is 

always satisfied and N and 6 are both zero. 

71 



The possible values for T2N when T > a/k can be determined as follows. 

The inequalities r - (5n/2k) <a - (a/k) and a 2 2~ - (3a/k) are satisfied 

whenk> 3. Thus, with 8 restricted to [n - (3s/k), n - (5r/2k) 1, the 

inequality 8 > cos -1 

e)/3, i.e., -. 
p implies cos-lp <2n - 8 - (2n/k) and n/k <(2a - 

neither (46) nor (4?) is ever satisfied. Hence 7 
2N 

= t when 
8 >_ cos-‘p (or equivalently @ z 0) and o. = 0. When @ CO and IV(T) I 
< 1: 

‘2N = T + 8 - cos-‘p if v(T2N) = +l 

‘2N = T + 8 - 2n + cos-lo if v(T~~) = -1, 

subject, of course, to T2N >_ T2N-l. The limiting cases when L(T) I = 
1 are T2N = T 

and T2N 

- (2n/k), which corresponds to cos.~~ = 8 + (2a/k) in (50), 

= T - 4(n-8)/3, which corresponds to cos p = (2R + 8)/3 in (5;). 

When r/k CT C 17 - - 8 + (n/2k) (38) indicates 71 = r/k and it is easily 

deduced that if T1 = n/k, v(T1) = +l. It is also easy to see that N is at 

most 1 if iv(T) I C 1. Thus, if N = 1, T2N = T2 = T + 8 - cos-‘p from (50) 

when IV(T) 1 C 1. Furthermore, as v(T) ranges from +l to -1, T2 ranges 

from T to T - (2g/k). Hence, if T > 3rr/k, T2 z T1. But if T <3r/k, T - - 
(2n/k) C a/k so that T2 = T1 for some value of @ As # is decreased from 

this particular value N = 0 until v(T) = -1 at which point N = 1 and T1 = T2 = 

T. Thus, the following results are obtained. 

For n/k <T C 3r/k: 

$20 implies N = 6 = 1, Go = 0, T1 = n/k, T2 = T 

o> @> G.. implies N = 1, 6 = 0, T1 = n/k, T2 = T + 8 - cos -‘p 

(50) 

(51) 
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Q:‘#> G4 implies N = 0 

G44’ a implies N = 6 = 1, @‘. = $, T1 = T2 = T, 

where $ and G4 satisfy: 

tan $ = -COS 8 + COS(T -t 8 - a/k) 

tan G4 = -COS 8 + COS(e + T/2 i- 7/2k) 

For 37/k < T _< n - 8 + (n/2k): 

implies N = 6 = 1, Q. = 0, T1 = a/k, T2 = T 

implies N = 1, 6 = 0, T1 = r/k, T2 = T + 8 - cos-‘P 

implies N = 2, 6= 1, go = G8’ 71 = r/k, T2 = T - (an/k), 

T3 4=T = 7 

where tan @ = 8 -CO& + COS( 8 -t 2n/k). 

Whenr- e+(r/2k) CT <v- 8 + (m/k) it is possible that T1 is given by ( 37) 
with m = -1. From (39) it is clear that T1 is given by (37) if m - 8 + 

(a/2k) : T C 71 - 8 + (Tr/k) and if 7~ - 8 + (n/k) _< T < 71 - 8 + (27/k), then T1 

is either given by (37 ) or is equal to r/k. As shown above 72N = Tand Go = 0 and 
N = 6 = 1 if @ 1 9. Then T1 is given by (37). With T1 given by (37), v(T1) = 
+l so that T2N is given by (50), i.e., T1 = T + 8 -cos -1 p. Now T - (27rr/k) 
>_ 4(8+T-@/3+(n/3k) is equivalent to T _<4(~ - 6) - (7r/k). Thus the 
following result is obtained for 7~ - 8 + (r/2k) CT _< 4(@) - (7lT/k): 

$‘> 0: N = 6 = 1, o. = 0, T1 = [(n/k) + 4(8 -t T - @l/3, T2 = T 

0 > G> @8: N= 1, 6= 0, T1= [(a/k) +4(8+T - n)r>l/3, T2= e+T - COS-1p 
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f18 > h N = 2, 6 = 1, Q’, = a8, 71 = [s/k + 4( e + T - or) ]/3, T2 = T - 

(2n/k), T3 = T4=T. 

If 4(a - 8) - (7r/k) CT < B - 6 + 2r/k the above result for @ z 0 holds. 
For 0 > @ > G2 where tan g2 = -CO& + COS(h + (V/k) + 27 + 81/3); - 
6+T - cos -‘p > [(n/k) + 4(e + T - n) l/3. Hence for this range of #; 
N= 1, 6=0, T1= [(n/k)+4(8+T- n)]/3andT2= e+T-cdp. 

Then for 8, > @ > P, for some @, N = 0 and u(t) is given by: 

u(t) = 

-tk/ II), for0 ct <8+T - 2n+c0&lp 

tk/ r), for 8 + T - 2V+cos-‘pet C8+T -1 
- cos p 

-tk/ 7T), for 8 + T - cos -lp <t CT 

The value of & is the maximum of the values @I and @3 where 8 + ‘I’ - 

2?7 + cos -lp(e, 2) = n/k and T = (r/k) + 4 [n - cos -lp(e, G6) I. It can 

be shown that G6 > @l when 4(77 - 6) - (7n/k) CT C [4(n - @/31 + (n/k), 

and @I >_ G6if [4(7’r- @/31 + r/k 5 T <n - 8 + (Zn/k). Thus, the 

following result is obtained for 4(n - 0) - (7n/k) CT < [4(7~ - Q/31 + 
(n/k): 

‘$ > 0: N = 6 = 1, Q. = 0, T1 = [(n/k) + 4( 6 + T - 7~) ]/3, T2 = T 

cl>@> 8,: N = 1, 6 = 0, T1 = [(n/k) + 4(8 + T - n) l/3, - T2 = 8 + T - COS-lp 

@,>qO qt6: N=O 

a,:!% N=6=1, G = $ 
0 6’ ‘1 = T2 = T. 

In the case, [4(7r - 8)/31 + (r/k) _< T CR - 8 + (2n/k) and ‘$1 >_ @, T1 = R/k 

andv(T1) = -1. Thus T2N= 8+T - 277++0~ - ‘p as long as IV(T) I C 1 and 
the limiting case occurs if 6 + T - 2n + cos-‘p = T + [4(e - 7r)/3 I. Thus 

for this range of T the following result is obtained: 
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8 >_ 0: N = 6 = 1, e. = 0, 71 = [(a/k) + 4( 8 f T - 1~) l/3, T2 = T 

0 > @>, G2: N= 1, 6=0, T1= [(n/k)+4(8+T-g)1/3, TV= 8+T- cos -‘p 

ti2 >#>@l: N= 0 

4, >_ @J> 8,: N = 1, 6 = 0, T1 = R/k, T2 = 8 + T - 277 + cos-‘jJ 

0, >_ ik N = 2, 6 = 1, Go = g5, T1 = s/k, T2 = T + [4( 8 - n)/3 1, T3 = T4 = T. 

where tanQ5 = -case + cosC(2S + 8)/3 1. 

Now consider T in the interval ma - 8 + (2s/k) _< T _< (m+l)n - 8 + (8/ 
2k), where m is any integer greater than zero. Since (33) is not satisfied, 

5 = r/k whenever T2 > (n/k). It is seen that 8 + T - rn71 - (n/k) >_ n/k and 
that 8+T-n + (r/k)CI’<e+T-(r/k) for the ranges of 8 and k considered. Thus 
se Ming T2i = 8 + T - R - (m-i)n - n/k and T2i+l = T2i + (277/k), T2 2 T1 and ~~~-,-l <T< 

’ ‘2mt2 ’ Hence for @ > 0, N = m+l, 6 = 1, Q. = 0, T1 = n/k, T2N = T and - 
the intermediate Ti are as given above. For 0 > @ >_ g3 the only changes . 
are that 6 = 0 and T2N = 8 + T - COS-‘p, where tanti3 = -co& + cos(77 - 

r/k). For g3 > @ > g5, N is reduced from m+l to m with no change in 
7i if i < 2m and T2m = e+T-2n+cos-‘p. ForG51 $, 6= 1, go= G5, 
N = m+l. T2m = T + 4( e - lr)/3, T2m+l = T2m+2 = T and the remaining 

Ti are unchanged. 

Consider the interval m?r - 8 + (a/2k) CT <mm - 8 + (2n/k) with m > 1. 
In this case 8 + T - (m-1)77 - (R/k) 3 [4(@ + T - m@+(a/k)7/3. Hence the 

results are similar to those just obtained except that T1 = [4(0 + T - m@+ 

(r/k) l/3, i.e., 

$J >_ 0: N = m, 6 = I, go = 0, T1 = [4(e + T - m@+(n/k) 1/3, T2i = 8 + T - 

(m-i)n - (B/k) 

‘2i+1”2i + (2n/k), i=l, 2, . . . , N - 1, T2N = T. 
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0 > Sl 8,: Only changes from ,G 2 0 are 6 = 0, T2N = 8 + T - cos-‘p 

tij3 > tJ > 8,: Onlychangesfrom GL Oare 6= 0, N= m-l, T2N= 8+T - 

27l+ cos -1 p 

8, E @: N = m, 6 = 1, go = @,, T2m-2 = T + [4(6 - n)/31, T2m-1=t2m=TandT1 
through T2m- 3 are the same as when # > 0. 

This completes the derivation of the extremals for all T L 0, k > 3, I$1 

<m/2, and ?T - (3Ir/2k). <Sew - (5qr/k). 

EXPLICIT REPRESENTATION OF EXTREMALS 

The formulas for the extremals will be given in a tabular form for T > 0, 

k 1 2. 5, I@ I < 7~/ 2 and 0 C 6 < 7~. To simplify the table the extremals will 

not be given for the break points in T and 6. For any particular case of 

interest where T and 6 are break points the extremal could be readily 

determined from consideration of the neighboring intervals. 

The following functions of k, 6, @ and T are introduced to simplify future 

expressions and notation of the dependence on the parameters will be 

suppressed. 

hl = r/k 

h2 = (27r + 8)/3 

h3 = (4~+ e)/3 

h4 = B+T- cos-1(tan@+cos6) 

h5 = [4(6 + T - @+0/k) 1/3 
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h6 = 8 + T - 2~ + cos-‘(tan@ + case) 

h7 = T + [4(6 - r)/31 

h8 = 8 + T - TT - (R/k) 

Let g(k) = 0 if 2. 5 _< k C 3 and g(k) = 1 if k > 3 and define - 

e. = 0 

e,(k) = 71 - [5 + g(k) l(h1/2) 

6,(k) = 7~ - 12 + 3g(k) l(h1/2) 

e3(k) = vr - [ 1 + g(k) l(hl/ 2) 

e,(k) = [2 - g(k) I?T - [S - 5g(k) l(h1/2) 

e5 = 77 

Then let j( 8, k) be defined implicitly by 6 j(e k)(k) < 6 < 6 
dependence on 6 and k will be suppressed fkom now on. 

j(e, k)+l(k) and the 

Also introduce the 

functions s,(j) = 6.. for i, j = 0, 1, 2, 3, 4 where 6.. = 0 if i # j and 6ii= 1. The 
11 

dependence on j w?ll be suppressed in the future. 

Further, introduce the functions 4: (T, 6, k), defined implicitly by 1 pi 1 
i’= 1,2,..., 11. The pi are defined as < n/ 2 and tanGi + cos.6 = pi, for 

follows: 

PI = CO&r + 8 - hl) 

F2 = cosCh2 + (T + h1)/31 

P3 = cos(fl - hl) 
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P4 = cost-e + (T + hl)/21 

P5 = codha) 

p6 = cash - (t - hl)/41 

P7 = -Pfj 

P8 = cost8 + 2hl) 

5-J = 
9 

costh3) 

50 = cos[h3 + (T + hl)/31 

PII = -P3 

The break points in T, i. e., endpoints of intervals in T in which the form 

of -She extremals remains unchanged, are given below: 

3hl(qo + g ql) + [4(?7 - O)-hll (l-g)ql/3 + [7 - 8 + (hl/2) 1 

(q2 + gq3) + thl + [4(7r - @/3]~[q3(l-g)+q41 

CT - 6 + (hl/2) I&, + 91) + [4(n - @-hl ][(l-g)q2 + gq3 1 + 

thl + [4(0)/313gq2 + 3hl[Wg)q3 + q41 

C4(n - e) - 7hl lC(l-g)q, + gq11 + (I7 - 8 + 2hl)g(qo + q2) + 

thl+r4(R-0)/3 l&l-g)ql + 3hl [(l-g)q2 + gq3 1 + 

[2v - Q + (hl/2) lb&q3 + q41 
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T4 = 

T5 = 

T2n = 

{hl + ‘&r-8)/313 [(l-g)qo + gql] + C27r - 8 + (hl/2)lcg(qo + 

q3,)+q21 +(r-8+2hl)(l-g)ql + Or-e+-2hl)[(l-g)q3 + gq41 + 

C4(2m - B)-7hl I (l-&i4 

(T- 8+2hl) [(l-g)qo+gql 1+(2n- 0+2hl) [g(qo+q3+q4)+q2 1 + 

C2n-B+(hl/2) 1(1-g)(ql+q3) + n(l-g)q3 + Ehl+[4(28-@/31 3 

t l-a4 

nn-8+(hl/2)+(3hl/2) [q4+(l-g)(ql+q3) I-~[ql+(l-g)(qo+q4) 1, 

n> 3 

T2n+l = nr-e+2hl-(3hl/2) cq4+(1-g)(ql+q3) I +rcg(q,-q,)+(l-g)(q3-9,) I, 

n> 3 

The significant break points in @ depend on T, 8, and k in a complicated way. 

But throughout any given 8 interval and T interval they are either 0 or one 
of the Qi, i= 1, 2, . . . , 11, defined above. 

&(T, 8, k), i=l, 2. 3,‘4, be defined by: 

Thus, for Tmdl CT <Tm, let 

= Am 

90 

91 

11 
92 

93 

94 

, m = 1,2, 3, . . . , 
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where : 

0 0 0 tJ4U-g) $4 

0 0 0 
Al = 

@,(1-g) $4 

@l $1 @l [G&l-g)+G1gl @4 

@4 $4 c@4Wg)+@6g 1 as '6 1 

@,(1-g) 

G4(1-g) @4 

blt1-g)+@2gl @l 
1 

r@5(1-g)+@6gl G5 

0 0 G4(l-g) c@811-g)+@4gl 
0 0 

A3 = 
[G4(l-g)+G2gl [$-+)+‘& 

'8 [@,(1-g,+@& '1 cG8u-g)+@lgl 

'8 [@,(1-g)+@& ‘5 

0 0 $$-g) '8 

0 
A4 = 

,a,( 1-g) Q8t1-g) '8 
[$2(l-g)+@8gj [@1(1-g)+@2g1 c@8(1-g)+(63g1 '8 

[$J6(l-g)+@8gj [@5t1-g)+'6d '5 
$5 
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A5 = 

A6 = 

@2t1-g) 

d$l-g) 

c(65wg)+@8gl 
- 

0 
0 

Am = 

$5 

0 

0 

@3 

@5 

0 

0 

@3 

@5 

@8t1-g) 

6$-g) G8 c@J7wg)+~8gl 

cG8(1-g)+G3gl qJ8 c~,owg)+~8gl 
1 

'8' 1-g) 

@8( l-g) 

@5 

@8t1-g) 

@8t1-g) 

[',tl-g)+@3g 1 

@9( '-g)+@@ 

@,(1-@+@@ 

I 

@lo(l-g)+@8g 

@5 

1 

[@9t1-g)+@@] 

[~gwg,+@8gl 

I 

,m>7 
[~,,wg,+@8gl - 

Let @” = nf 2 and G5 = - 1r/2 and introduce the functions r., i=9, 1, 2, 3, 4, where 

r. = 1 if (i+ < @ < &+l Extremals flor Ct = 8 will not be 1 and ri = 0 otherwise. 

defined but they can be easily determined by considering the neighboring 

intervals. 

Now the expressions for N, 6, Go and Ti for i= 1, 2, . . . , 2N can be given. 

ForTCToitisclearthat6=OandN=0. WhenT>To, 6=ro+r4 
and @ = r Q1+r4Q4. 

T, eJo@ anOd k. 

In this case N and Ti are functions of all the parameters 

The dependence on T will be shown implicitly by expressing 

the dependence on m(T) where TrntTJ- 1 < T C TmtTj. All other dependence 

will be suppressed, e. g. N = N(m). Furthermore N(m) dominates Ti(m), 
i.e., Ti(m) given by the formulas for i > N(m) are meaningless. 
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IV(l) = 1 - r3 

T~( 1) = (1 - r3 - r4) Ehl + T - hl) [q4 + (1-g)q3 13 + Tr4 

~~(1) = r2(h4-T) [l - q4 - (l-g)q31 + T (1-r3) 

N(2) = 1 + r4 - (r3 +r4) [qltl-g) + q2 + q3gJ - r2b3(l-g) + q41 

r,(2) = hl k10+ql+(r3+r4) [q4+(q3-41)(1-g) 13 + h5(l-r3-r4)(q2+q3g) + 

T b, [ql+q2+(q3-ql)g 1 -I- (ro+rl) [q3(l-g)+q4 13 

T2(2) = T(l-r2-r3) + (Tr2 + h r - 2hlr4) (qo+qlg) + h4r2[ql(1-g)+ 43 

q2+q3d + [hlr3 + (hl-T)r4 lh3(1-g)+q4 1 

~~(2) = T4(2) = Tr4ho + qlg + clg(l-g) + q4] 

N(3) = l+r4-(r3+r4.)ql(1-g)-r2(q2+q3g) + (1-r3-r4) [q3(l-g)+q4 1 

T1(3) = h5[qo-q1(r3+r4)(1-g)+q2(ro+rl)g$911+ Tb4q1(1-g)+(ro+r1) 

h2(l-g)+q3glj + hl hr3+r4) h2(l-g)+qggl + q3(l-g)+q4~ 

T2(3) = [T(l-r3)+h4r3-2hlr41(qo+qlg)+ [T(l-r2 -r3)+h4r21ql(1-g)+ 

(h4-T)rlq2g + [(T-2hlI (l-r3 -r4)+h6r3+h7r41(1-qo-ql) + 2hl 

(l-r3 - r4) (q2+q3g) 

T3(3) = T4(3) = Tr4[l-ql(l-g) 1 + T(l-r3 -r4) [q3(1-g)+q41 

N(4) = 2 - r3 - Cl - (l+r3+r4)glqo - [l + (r2 - r3 - r4) (l-g)141 

T1(4) = h5+(T-h5)r4[qo(1-g)+qlgl + (hl-h5) [(r2+r3)q1(l-g)+q2+ 

(qo+q3)gl-(W3 h3Wg)+q4 1 



(l-r3 -r,)lg +(h6r3+h~r4)(1-q~-qlg)+(T-2hl)(1-r3-r4)(l-qo-ql-q2g) 

~~(4) = Tr4[ql(l-g)+q2g~+(h8+2hl)[qo+q2(l-r3 -r,)lg+T(l-r,)(l-q,-ql-q2g) 

~~(4)=r3(4) (1-g)+[T(l-r3)+(h4r3-2hlr4)qo+(h4-T)r2q21g 

~~(4) = 76(4) = Tr4q,g 

N(5)=2-r3-(l+r2 -r3 -r4) [(q,+q4)(1-g)+q1gl+(r3+'4)qog+q3(1-g)+qqg 

sl(5) = [h5(ro+rl)+hl(r3+r4)~[q~(l-g)+qlg]+h~[(ql+q3)(l-g)+q4g]+ 

[h5-(4n/3) 1Cq2+(q,+q3)g1+ ET(ro+rl)+[h5-(4~/3)](r3+r4)lq4(l-g) 

~~(5) = ~Tr~+h4rl1~q,(1-g~+qlgl+~h6r3+h~r4~[:1-q3+(q3-q~-q4)gl+ 

T(ro+rl)q4g +h8{(1-r3 -r4)[ql(1-g)+q2g1+q,g3+(h8-n)[q3(1-g)+ 

q4gl+(T-2hl)(l-r3 -r4)[q2(l-g)+q3gl 

T3(5)=T+(h8+2hl-T) El-r3 -r4)[ql(1-g)+q2gl+qog]+(h8-r+2hl-T)[q3(1-g)+ 

T4(5)=T+(h4-T) [r2q1(1-g)+(r39,+r2q2)g ]-2hlr4q,g 

-[2hl(l-r3 -r,)+(T-h,)r,+(T-h,)r41[q3(l-g)+q4gl 

T5(5)= T6(5)=Tr4q,g+T( l-r31 [q3(l-g)+q4g 1 

N(6)= 3-r3-qo(l-g)-ql+(r3+r4)q,g+(r0-r2+r3+r4-2)q4(l-g) 

~~(6) =hl~~q,+q2+(ro+rl)q4~(l-g)+(l-q4)g~+h5ql(l-g)+~h5-~4~/3)~ 

ECq3+(r3+r4)q41(l-g)+q4gI-(4n/3)[q3(l-g)+q4gl 
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T2(6)=h8 {(l-r3 -r4) Cqo(l-g)+ql l+q2tr3+r4)g j+(h6r3+h7r4) Ctqo+q4)t1-g)+ 

q1 I+(h8-V) Eq2(1-g)+q3+[qo+q2(l-r3 -r4)+q4]gj+t[h7-(4R/3) lro+ 

(h4-2drl h4(l-g) 

T3(6)=(h8+2hl) [(l-r3 -r4) [qo(l-g)+ql 1+q2+q3+(qo+q4)g~-nI:[qo+q2(l-r3 -r4)+ 

q41g+q3+q2(1-g) 3 +T E[r4qo+(ro+r4)q41(l-g)+r4ql 1 

?4(6)= [T(l-r2-r3)+h4r2 lcqo(l-g)+ql l+(T-2hl)(l-r3-r4) [q2(l-g)+ y3 

q4gl+(h6r3+h7r4)(92+q3+94g)+Ttro+r4)q4(l-g)+h8 ho+q2t1-r3-r4) ]g 

T5(6)=T(l-r3) [q2(l-g)+q3+q4gl+Tr4q2g+(h8+2hl) [qo+q2(l-r3-r4) ]g 

~~(6)=T(l-r~) [q2+q3+q4gl+(h4-T)r2q2g+[T+(h4-T)r3-2hlr4]qog 

T7( 6) = T8( 6) = Tr4qog 

General expressions can be written for the parameters N and Ti for m > 7. - 
It is convenient to introduce the integer M(m) defined as follows: M is equal 

to N, if T2N- 1 < T, and otherwise M is equal to N- 1. Explicitly, 

M = N-r4~qo+q1+q4~l-g)+q2g~-~1-r3)~q2~1-g)+q3+q4g~-(ro+rl)q4(l-g), 

and ‘2+1 = ‘2N = T if M = N- 1. With M defined in this way, the range of 

the index i in the following expressions is 1 < i < M- 1. - - 

For n > 3; - 

N(2n+l)=n-r3-qo[(l-g)-( r3+r4)gl+Cq3-(l+r2-r3-r4)q41(l-g)-(ql-q4)g 

71(2n+l)= [h5-(n-2)(48/3) lCq,(l-g)+qlgl+:[h5-(n-1)(4n/3) l[q,+(q,+ q3)g!+ 

hl h1+q3)t1-g)+q4 1 
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T2i(2n+l)=h8+(i-n+l) n++a[(qo-q3)( l-g)+(ql-q4)g I, T2i+1(2n+l)= T2i(2n+1)+2hl 

N(2n+2)=N(2n+l)+qo+q2+(q.l+q3)g 

T1t2n+2)=hl[qo~q2+(91+93)8kChg-(n-1)(4T/3) ](ql+q4)(1-g)+~h5-n(4~/3)] 

Cs,( l-f$+q4g I 

T2i(2n+2)=T2i(2n+l)-lr[qo+q2+(q1+q3)gl 

T2i+1(2n+2)= T2i(2n+2)+2hl 

Also, for n > 7 - 

T2dn) = [T( ro+r~)+h4r21~qo+q~+(q2-qo)g~+~~(1-r3)+h4r3-2hlr4~qog -. 

+ (h6r3+h7r4)(1-qog)+(T-2h1)(1-r3-r4)[q2+q3+(q4-q2)gl 

+ E[h7-(4n/3) l(ro+rl)+(h4-2r))rZ 3 q4( l-g) 

The above formulas give a complete explicit representation of the extremal 

inputs for the problem considered. 

CONCLUSIONS 

The necessary conditions for an extremal input given in references 2, 3, 
and 4 for problems with bounded phase coordinates were discussed with 

respect to the problem at hand. These conditions give the result that an 
extremal input is proportional to a Signum function in which the argument 

of the Signum function is an adjoint solution. The se conditions allow 
discontinuities in the adjoint solution at certain junction points. The 
necessary conditions of reference 5, interpreted for this problem show 
that the se discontinuities are not required. One discontinuity is required 
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if it is desired that the adjoint represent any external normal to the set of 

attainability. This discontinuity only occurs when the external normal is not 

unique. It is shown that when the necessary conditions of reference 5 are 

satisfied the sufficient conditions of reference 1 are satisfied. 

These conditions imply that u(t) is an extremal input if and only if it can be 

represented by equations (28) and (29) subject to the constraints (30) through 

(35). In this representation the junction points and the discontinuity are 

introduced as parameters. The constraints (30) through (35) are determining 

equations and inequalities for these parameters. An example shows how these 

constraints are used to determine these parameters. 

The results are presented in tabular form for extremal inputs giving explicit 

formulas for the necessary parameters. 

Responses having an arbitrarily large number of arcs which lie on the phase 

constraint boundary can be obtained from extremal inputs if the time interval 

[o, T 1 is sufficiently long. In such a case the input tends to be in resonance 

with the oscillator over an intermediate segment of the time interval. During 

an initial segment the input seeks to get into the proper phase relationship 

with the oscillator. A final segment of the interval is spent attaining the 

proper terminal value for the input. 
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SECTION 5 

EXTREMAL BOUNDED-AMPLITUDE BOUNDED RATE INPUTS 

This section considers the problem of determining extremal bounded-amplitude 

bounded-rate inputs to linear stationary systems. The discussion will be re- 

stricted to the case of a scalar input. 

Consider a system represented by the vector differential equation: 

x(t) = Ax(t) + bw(t) (1) 

Here it is assumed that w(t) is a scalar input which is a continuous function 

of time with a piece-wise continuous derivative k(t). It is also assumed that 

Iw( t) 1 and I&(t) 1 satisfy the constraints (2) and (3). 

(w(t) 1 c k - (2) 

(3) 

The vector, x(t), is an n-vector representing the state (or response) of the 

system and A and b are constant n x n and n x 1 matrices, respectively. The 

system is assumed to be initially at rest, i. e. x (0) = w (0) = 0. The input, 

w(t), can be adjoined to the state of the system by introducing xn + I(t) = w(t) 

and for convenience set w(t) = v(t). Then the system is represented by: 

i = k :]x + [Y]v, X(O) = o 
where x represents the n + l-vector and the constraints are: 

Ix n + 1 (01 5 k 

Iv (t) I ( 1 

(4) 

(5) 

(6) 
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‘or any T > 0 the set of attainability, K(T), is defined as the set of all x(T) 

! 

hich correspond to solutions of (4) subject to (5) and (6) for 0 < t < T. - - 
his set is a closed, bounded, convex set in Euclidean n+l dimensional space. 

nputs which give rise to boundary points of K(T) are defined to be extremal 

nputs. Since K(T) is convex, it has the property that at any boundary point, 

ay x. (T), there is a hyperplane, 

l (T),Bi. e. 

9 containing the boundary point which supports 

There is a vector $ normal to Vsuch that $a [,XB (T) - x(T) 1 20 

or any x(T) in K(T). Such a vector, $J, will be called an external normal to 

c(T) at x.~ (T). 

‘bus, it is possible to interpret extremal inputs in the following way. On a 
.ime interval, LO, T 1 an extremal input gives rise to a response x(T) that is 
:uch that the projection of x(T) on some vector $ is a maximum. Hence, if 
.v(t) in (1) is considered as a disturbance and if the significant effects of the 
disturbance can be described as linear combinations of the state of the system 

..hen the worst disturbances are extremal inputs. The results obtained for the 

problem of determining extremal inputs provide a means for evaluating the 
performance index for a controller in the minimax problem with bounded - ampli- 

tude, bounded-rate disturbances. A brief description of such a problem is as 
follows : 

Consider a system described by 

. ,. A ,. 
X =Ax+bu+cw, x(0) = 0, w (0) =o 

with u, the scalar control, a linear combination of the components of x and 
w where w is a scalar disturbance that satisfies /w(t) 1 < k and 1 w(t) ( 5 1. 
The closed loop system may be written inthe form of equation (4). For a 

fixed time, T, the performance index of a controller u is given byCi(u) =max Ci(u) 
15 ifs 

with C i(u) = max Id(i) x(T) 1 h w ere the maximum is taken with respect 
to all allowable v’s and a given set of row vectors, d(i), i’l, 2, . . . , s. 
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With this problem in mind it is desired to develop an efficient computational 

method to determine the maximum of the scalar product of a given vector,d, 

and x(T) subject to the constraints (5) and (6). 

In the following discussion the necessary and sufficient conditions for extremal 

inputs will be given. Based on these conditions two computational algorithms 

will be formulated. Then the results of a computer program derived from 

one of these formulations will be discussed. 

NECESSARY AND SUFFICIENT CONDITIONS 

The necessary and sufficient conditions state that extremal inputs are Signum 

functions of appropriate adjoint solutions. The adjoint solutions are continuous 

on the open interval (0, T) with a possible discontinuity at T. Determining 

equations are derived for the junction times (times when the corresponding 

extremal response enter or leave the phase constraint) and the discontinuity 

if it occurs. 

A discussion of the development of these conditions is given in the section on 

extremal inputs for the harmonic oscillator. The results presented there are 

written in terms of that specific problem. The generalization of those results 

for problems of the type considered here is as follows: 

J 

T 

‘Q(T) x (T) = rl n+l (t) v(t) dt wh ere Q(t) is a row vector satisfying 

0 

&z-r] A b c 1 0 0 
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hus a precise definition of an extremal input, vo, is that there exists a non- 

-ivial (continuous ) solution 77 (t) of equation (7) such that fT 77 tt) v,(t) dt = 
‘0 .n+l 

lax J r, ,n+ 1 (t) v(t)dt wh ere the maximization is taken over all v(t) which 
0 

atisfy (5) and (6) for 0 < t CT with .x n+l (0) = 0. A necessary and sufficient 
ondition for v(t) to be an extremal input is that: 

i) There exist a set of junction points 0 < 71 <_ T2 < . . . CT CT 
and setting 7 = 0 such that g [x(t) 1 CO for 7 

2q-F2q - 

g [x(t) 1 =O gr 72i+l I t I 72i, 
2i <t < 72i+l and 

i=O,l , . . . , q-l where 

g Lx(t) I= Cxn+l(t) 12 - k2 and 

ii) there exists a (row) vector $J(t) continuous on (0, T) such that 

v(t) = sgn i tin+ 1 (t) 3 0 <t <T 

where #J(t) Satisfies: 

+x(t) C(t) grad g [x(t) 1 

(8) 

(9) 

where C(t) = l/2 $(t) b 
[I 

sgn [xn +,(t) 1 and y,(t) =l of g Ix(t) 1 = 0 
0 

and X(t) = 0 if g [x(t) 1 CO and 

iii) on each interval where g Lx(t) 1 =O the following inequality is satisfied 

G(t) b 
[I 

xn+p >_ 0 
0 

(10) 
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Furthermore, $J(T-) is an external normal to the set of attainability at the 

point x(T), and if $ ( T) is an external normal to the set of attainability at 
x(T) then each of the first n components of $(T) is equal to the corresponding 

component of # (T-) and 

and 

+ n+ltT) =‘n+l (T-1 if g Lx(t) 1 <O (11) 

“n+l (T) - tin+,(T-) ]x~+~ (T) _> 0 if g [x(T) 1 = 0 (12) 

Now suppose 77(T) is a given vector and v(T), 0 <t CT, is the corresponding 

extremal input. Then there is a $ (t) satisfying (9) through (12) such that v (t) 

and $(t) are related by equation (8). The functions V(t) and $(t) are related in 

the following way if $(T) is chosen properly. 

dJ (T) = WI’) 

#Ji(t) =rli(t), 0 <t CT, i=l, 2, . . . . n 

(13) 

(14) 

* n+l (t’ = 71n+l(t) - “,+1(‘2i+l)’ ‘2i-2 _<t < ’ - 2i-1, 
i = 1, 2,. . . , q-l 

* n+l (t) = 0 , T2i-1 _< t 572i, i =1,2, . . . . q-l 

* n+l(t) = T&1 (t) + 6 bn + +-) -?& (T) I, T zq-2 5 t < T if Tzq- 

(16) 

= T (17) 

G n+l(t) = v,+p - Tn+l (7 2q-1) 

ti n+l (t) =o. > 7 sq-l 1. t < 72q if Tzq-l 
<‘I’ (19-I 
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1c/ n+l (0 = 0 * t = -b if kc= T 

I tc/ n+l ft) = qn+l (t) + 6 [Gn+l (T-1 - qn+l (T)], +T 
2q 

st<Tif’T 2q< T 

(20) 

(2 1) 

In equations (17) and (2 1) 6 is equal to zero if g [ x(T)] < 0 and is equal to 

one if g [ x(T)] = 0. 

Thus, if II (T) is given, the corresponding extremal input v(t) can be deter- 
mined by finding G(t). From equations (13) through (21) it is seen that $(t) 

can be found from ‘fl (t) if quantities q, 6, en+1 (T-) - q n+l (T) and 7i, 
i = 1, 2, . . . . 2q are known. These quantities are not arbitrary and certain 
determining equations and inequalities exist. 

Recalling that v(t) = sgn [+n+l (t)] from equation (8) and that by definition 
g [ x(t)] < 0 for T2i 2 < t <72i 1, i = 1, 2, . . . , q, it is evident that the 7i 
are constrained by the implicit inequalities: 

) w (72i-2) + /t sgn 1 q (7) - q (7 2i-l)l d 7 ) < k, ~2i 2 < t< 72i i (22) 

‘2i-2 

Also the 7 i are constrained from (10) taking note of (14) by: 

(T - 2i ‘2i-1 ) w(t) q(t) 2 0, 7 2i- 1 S;ts.T 2i, i= 1, 2, . . . . q (23) 
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where of course w(t) E w ( T2i) and I W(‘2i) 1 = k From (111, (12), and (13) 

follows the constraint: 

6 w(T) [17,+1(T) - tin+l(T-) 1 _> 0. (24) 

NOW for determining equations there are the obvious equations 

lw(T 2i-1) I =k, i = 1, 2, . . . . 9. 

From the continuity of 4 (t) and equations (15) and (16) it follows that: 

‘?(T2i) = ‘?(T 2i + 1) J i = 1~2, . . . . q-2. 

(25) 

Also from the continuity of #(t) and equations (16) and (17) one can obtain: 

(26) 

77 n+l(T2q-2) + 6 bn+l(T-) - vn+l(T) I=o if T2q =T (27) 

If 7 
2’4 

<T one can obtain from (20),(21) and the continuity of g(t) at T 

77 nf 1 (T2g) +6 [Icln+l (T-) - v,+~ (T)]= 0. If T2q = T > T2qm1, then 62: 1”::: 

9 n+l (T-) =O so that again Vn+l(T2q+ 6 [$n+l(T-) - qn+l(T) 1 =O. 

Hence one obtains the equation: 

(T - 7 2q-1) .t’?n+l (T2q) +6 L#n+l (T-1 - Vn+l(T) 1 -I = 0. (28) 

If 7 2q-1 <T the continuity of $ (t) at T along with equations (16) and (18) 
impliesat 2q-2) = rl (T2q-l). Hence, o”n”e-ian write the equation: 

(T - 7 ~~-1) c q(T2q-2) - rl (‘2q-1) 1 = 0 (29) 
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The parameter 6is the following function of T - T2N: 

0 if T-T~~>O 

1 if T - T2N = 0 
(30) 

Equations (25) through (30) are determining equations for, q, T., 6, and 
1 

G n+l(T-) - rl,+p subjecttothe.constraints(22) through (24). 

FORMULATION OF A COMPUTATIONAL ALGORITHM 

The first computational algorithm is formulated as a nonlinear programn;ing 

problem. The second algorithm is based on a finite sum approximation of the 
integrals involved in the first formulation. 

Equation (7) can be solved explicitly by determining the eigenvalues and eigen- 

vectors of the matrix A. Hence 17n+l (t), 0 < t < T can be assumed known - 
explicitly as a function of t. A value for q can be chosen and then the integral 

from 0 to T of the product rln+l (t) v(t) may be obtained as a function of TV, 

i=l, 2, ,,,2q, 6, and+ n+ltT-) - ‘n-l-1 (T) by making use of equations (8) 
and (13) through (21). That is, 

(31) 

The parameters, 7 ., 6, and #Jr,+1 (T-) - rl, + 1 (T) 1 are to be constrained by the 
inequalities 

7 = 0 < T1 2 T2 < . . . <T 0 zq-l 5 7zq <_T (32) 
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and the constraints (22) through (30). Then one can maximize J subject to the 

constraints just cited. This is a mathematical programming problem. If q were 

not chosen properly no solution would exist and q could be varied until a solution 

exists. 

There are major difficulties present in this method. To obtain J as a function 

of the parameters shown it is necessary to be able to determine explicitly the 

zeros of v(t). This is equivalent to solving transcendental equations explicitly 

which is not generally possible. Also to obtain explicit constraints from (22) 

through (30) the zeros of v(t) must be known explicitly. Another major problem 

may be that it is not easy to determine whether a solution exists for a particular 

value of q. 

Because of the difficulties involved in the above method, an approximation to the 

problem was made which leads to a linear programming problem. In essence, 

the computational problem is to maximize the functional: 

/ 

T 

I(v) = rl n+l(t) v(t) dt (33) 
0 

over the function space of all piecewise continuous functions v(t) defined for 

0 < t < T and satisfying the constraints (5) and (6) for all t in the interval 

O==t <T. Basic to the approach is a finite-sum approximation of the integrals, - - 
which may be thought of as sampling” the integrands at a finite number of points. 

Let m such sampling points, sI, s2, . . . , sm and m +l auxiliary points ro, r-1, 

. ..) r m be chosen to satisfy: 

O=r <S <r <S <...<S <r 
0 1 1 2 =T m m (34) 
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t 

o approximate the integral, 
/ 

g(s) ds, for a given t, p 

,t - r 
P 

I 5. It - ri I 
0 

and the integral is approximated by: 

; i=l g(‘i) (r’ - ‘i-1 ) 1 

lrhere g denotes anarbitrary piecewise continuous function. 

is chosen so that 

t is desirable that the points of discontinuity of g are included in the auxiliary 
loints r.. The points of discontinuity of the integrands of interest are the points 

d discominuity of v(t). These points are unknown and hence only estimates of 

hem can be used. 

The approximate problem to be solved is to maximize 
m 

S E c 77n+1(si) v(si) (ri - risl) 
i=l 

subjects to the constraints: 

idsi) I cl for i”1, 2, . . . , m 

I ii v(si) (ri - risl) I <_ k for j = 1, 2, . . . , m 
i=l 

(35) 

(36) 

(37) 

The linear programming formulation of this problem is, Given the points si and r. 
1 

and the function 7 n+l’ maximize the linear form: 

m 

L=C q 
i=l 

n+l (si) (ri - rim11 X. 1 (38) 
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in the m unknowns x., 1 
subject to the 3m linear inequalities: 

x. 5 2 
3 

j 
c (I-. - r 

i= 1 1 i- 

j 

c 
i= 

<k + r l)xi- j 

1 
L - (ri - rimI) xi 1 5 k - 

(39) 

(40) 

r.. 
J 

(41) 

For this linear programming formulation non-negative unknowns xi = v (si) f 1 
have been introduced. 

A computer program has been written to solve this linear program with a maxi- 

mum of 14 unknowns with equally spaced sampling and auxiliary times. Results 

were obtained from this program for an example and they are presented below. 

COMPUTER RESULTS 

The example chosen is one for which the exact solution is known. The following . . . 
problem is considered. The system is: x f x = u, u =v, (v 1 5 1, (u ( <_ sr/k 

. 
with x(O) =x (0) =u(O) =o 

The vector r](T) is L( 71/k) cos 8, (n/k) sin 8, (r/k) tan @I. The function 

Vn+ 1 (t) is 

rl n+l(t) = COS 0 - cos (6 + T - t) + (n/k) tan @. 
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(42) 

Values of k, 9, @, and T are 4, a 18, 0 and 3 ‘II /2 respectively. 

The exact solution to this problem is 

I 

-1 for 0 < t C a/4 

0 for a/4 < t < 3n/8 
v(t) = 

+1 for 3~18 < t < 77118 

0 for 77rf8 <t < 3~12. 

The value of the integral with this extremal input is (77 /4) cos (r/8) + 2 sin (n/4) 

which is approximately 2. 1398. Approximate solutions to the problem were 
found by using the computer program with the number of unknowns, m, equal to 
8, 9, 10, 11, and 12. The resulting inputs along with a graph of ?J+,(t) are 

shown in Figure 12. The input obtained with m = 12 is the same (to nine 

significant figures) as the input given by (42). This happened because the allowed 
breaks in v(t) for m = 12 include all the break points of the exact solution. The 

values obtained for the approximated integral are: 

2.1001 for m = 8, 

2.1120 for m = 9, 

2.1082 for m =lO, 

2.1150 

2.1490 

for m =ll, 

for m = 12. 

These results indicate that the approximation can be made adequate if enough 

unknowns are introduced. However, for the present program, the computation 
time increases rapidly with an increase in the number of unknowns. For exdmple, 
the computation time necessary to obtain the solutions in this case are: 
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15 seconds for m = 8 

34 seconds for m = 9 

58 seconds for m = 10 

91 seconds form= 11 

132 seconds for m = 12. 

Thus for more complicated problems this method may be too costly to use. 

SUMMARY 

Solutions to the problem of determining extremal bounded amplitude, bounded 

rate inputs to linear stationary systems are presented. Necessary and sufficient 

conditions for extremal inputs are given and a set of determining equations are 

derived from these conditions. Certain constraints are also derived that must 

be satisfied along with the determining equations. 

A computational algorithm is formulated which exhibits’ what appear to be major 

computational difficulties. A linear programming formulation of an approximation 

to the problem is given along with computer results for an example. An adequate 

approximation can be made with this formulation. But the computation time may 

become excessive for an adequate approximation. 
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